BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24856144)

  • 1. Cricothyroid muscle and thyroarytenoid muscle dominance in vocal register control: preliminary results.
    Kochis-Jennings KA; Finnegan EM; Hoffman HT; Jaiswal S; Hull D
    J Voice; 2014 Sep; 28(5):652.e21-652.e29. PubMed ID: 24856144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laryngeal muscle activity and vocal fold adduction during chest, chestmix, headmix, and head registers in females.
    Kochis-Jennings KA; Finnegan EM; Hoffman HT; Jaiswal S
    J Voice; 2012 Mar; 26(2):182-93. PubMed ID: 21596521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of the thyroarytenoid muscle in a canine laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):769-76. PubMed ID: 8215096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyographic activity of strap and cricothyroid muscles in pitch change.
    Roubeau B; Chevrie-Muller C; Lacau Saint Guily J
    Acta Otolaryngol; 1997 May; 117(3):459-64. PubMed ID: 9199535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hirano's cover-body model and its unique laryngeal postures revisited.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2018 Jun; 128(6):1412-1418. PubMed ID: 29152744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cricothyroid muscle dysfunction impairs vocal fold vibration in unilateral vocal fold paralysis.
    Pei YC; Fang TJ; Li HY; Wong AM
    Laryngoscope; 2014 Jan; 124(1):201-6. PubMed ID: 23712513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative regulation of vocal fold morphology and stress by the cricothyroid and thyroarytenoid muscles.
    Deguchi S; Kawahara Y; Takahashi S
    J Voice; 2011 Nov; 25(6):e255-63. PubMed ID: 21550776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on Normal Laryngeal Electromyography of Thyroarytenoid Muscle, Cricothyroid Muscle, and Posterior Cricoarytenoid Muscle.
    Xu X; Yang P; Zhuang P; Yanchao J; Yanli M; Schrof C; Jiang JJ
    Ann Otol Rhinol Laryngol; 2018 Nov; 127(11):806-811. PubMed ID: 30187765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of dynamic laryngeal movements on pitch control.
    Hong YT; Hong KH; Jun JP; Hwang PH
    Am J Otolaryngol; 2015; 36(5):660-5. PubMed ID: 26095529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a semioccluded vocal tract on laryngeal muscle activity and glottal adduction in a single female subject.
    Laukkanen AM; Titze IR; Hoffman H; Finnegan E
    Folia Phoniatr Logop; 2008; 60(6):298-311. PubMed ID: 19011306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal-fold collision mass as a differentiator between registers in the low-pitch range.
    Vilkman E; Alku P; Laukkanen AM
    J Voice; 1995 Mar; 9(1):66-73. PubMed ID: 7757152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies.
    Yin J; Zhang Z
    J Acoust Soc Am; 2013 May; 133(5):2972-83. PubMed ID: 23654401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing vocal register transition in an in vivo evoked phonation canine model.
    Hsiao TY; Liu CM; Hsu CJ; Lee SY; Lin KN
    J Formos Med Assoc; 2001 Aug; 100(8):543-7. PubMed ID: 11678005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative model of voice F0 control.
    Farley GR
    J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated effects of cricothyroid and thyroarytenoid muscle activation on adult-male vocal fold vibration.
    Lowell SY; Story BH
    J Acoust Soc Am; 2006 Jul; 120(1):386-97. PubMed ID: 16875234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The activity patterns of neck muscles in professional classical singing.
    Pettersen V; Westgaard RH
    J Voice; 2005 Jun; 19(2):238-51. PubMed ID: 15907438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal and Neural Responses to Unexpected Changes in Voice Pitch Auditory Feedback During Register Transitions.
    Patel S; Lodhavia A; Frankford S; Korzyukov O; Larson CR
    J Voice; 2016 Nov; 30(6):772.e33-772.e40. PubMed ID: 26739860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D analysis of the movements of the laryngeal cartilages during singing.
    Unteregger F; Honegger F; Potthast S; Zwicky S; Schiwowa J; Storck C
    Laryngoscope; 2017 Jul; 127(7):1639-1643. PubMed ID: 27882556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.