BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24856211)

  • 41. Frequency dependence limits divergent evolution by favouring rare immigrants over residents.
    Bolnick DI; Stutz WE
    Nature; 2017 Jun; 546(7657):285-288. PubMed ID: 28562593
    [TBL] [Abstract][Full Text] [Related]  

  • 42. When phenotypes do not match genotypes--unexpected phenotypic diversity and potential environmental constraints in Icelandic stickleback.
    Lucek K; Haesler MP; Sivasundar A
    J Hered; 2012 Jul; 103(4):579-84. PubMed ID: 22563124
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heritable gene expression differences between lake and stream stickleback include both parallel and antiparallel components.
    Hanson D; Hu J; Hendry AP; Barrett RDH
    Heredity (Edinb); 2017 Nov; 119(5):339-348. PubMed ID: 28832577
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fitness maps to a large-effect locus in introduced stickleback populations.
    Schluter D; Marchinko KB; Arnegard ME; Zhang H; Brady SD; Jones FC; Bell MA; Kingsley DM
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33414274
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A test of hybrid growth disadvantage in wild, free-ranging species pairs of threespine stickleback (Gasterosteus aculeatus) and its implications for ecological speciation.
    Taylor EB; Gerlinsky C; Farrell N; Gow JL
    Evolution; 2012 Jan; 66(1):240-51. PubMed ID: 22220878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptation from standing genetic variation.
    Barrett RD; Schluter D
    Trends Ecol Evol; 2008 Jan; 23(1):38-44. PubMed ID: 18006185
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation.
    Barrett RD
    J Fish Biol; 2010 Aug; 77(2):311-28. PubMed ID: 20646158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantifying the constraining influence of gene flow on adaptive divergence in the lake-stream threespine stickleback system.
    Moore JS; Gow JL; Taylor EB; Hendry AP
    Evolution; 2007 Aug; 61(8):2015-26. PubMed ID: 17683442
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deviation from the line of least resistance does not exclude genetic constraints: a comment on Berner et al. (2010).
    Hansen TF; Voje KL
    Evolution; 2011 Jun; 65(6):1821-2. PubMed ID: 21644967
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Divergent sexual selection via male competition: ecology is key.
    Lackey AC; Boughman JW
    J Evol Biol; 2013 Aug; 26(8):1611-24. PubMed ID: 23859471
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parallel and nonparallel ecological, morphological and genetic divergence in lake-stream stickleback from a single catchment.
    Ravinet M; Prodöhl PA; Harrod C
    J Evol Biol; 2013 Jan; 26(1):186-204. PubMed ID: 23199201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus).
    Coyle SM; Huntingford FA; Peichel CL
    J Hered; 2007; 98(6):581-6. PubMed ID: 17693397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predation-imposed selection on threespine stickleback (Gasterosteus aculeatus) morphology: a test of the refuge use hypothesis.
    Leinonen T; Herczeg G; Cano JM; Merilä J
    Evolution; 2011 Oct; 65(10):2916-26. PubMed ID: 21967432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid adaptive evolution of colour vision in the threespine stickleback radiation.
    Rennison DJ; Owens GL; Heckman N; Schluter D; Veen T
    Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27147098
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Convergent evolution as a generator of phenotypic diversity in threespine stickleback.
    McGee MD; Wainwright PC
    Evolution; 2013 Apr; 67(4):1204-8. PubMed ID: 23550768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The evolution and adaptive potential of transcriptional variation in sticklebacks--signatures of selection and widespread heritability.
    Leder EH; McCairns RJ; Leinonen T; Cano JM; Viitaniemi HM; Nikinmaa M; Primmer CR; Merilä J
    Mol Biol Evol; 2015 Mar; 32(3):674-89. PubMed ID: 25429004
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic depression and the evolution of hypoxia tolerance in threespine stickleback,
    Regan MD; Gill IS; Richards JG
    Biol Lett; 2017 Nov; 13(11):. PubMed ID: 29093174
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recombination in the threespine stickleback genome--patterns and consequences.
    Roesti M; Moser D; Berner D
    Mol Ecol; 2013 Jun; 22(11):3014-27. PubMed ID: 23601112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation.
    Marques DA; Jones FC; Di Palma F; Kingsley DM; Reimchen TE
    Nat Ecol Evol; 2018 Jul; 2(7):1128-1138. PubMed ID: 29942074
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Parallel evolution of sexual isolation in sticklebacks.
    Boughman JW; Rundle HD; Schluter D
    Evolution; 2005 Feb; 59(2):361-73. PubMed ID: 15807421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.