BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 24856221)

  • 1. The histone deacetylases sir2 and rpd3 act on ribosomal DNA to control the replication program in budding yeast.
    Yoshida K; Bacal J; Desmarais D; Padioleau I; Tsaponina O; Chabes A; Pantesco V; Dubois E; Parrinello H; Skrzypczak M; Ginalski K; Lengronne A; Pasero P
    Mol Cell; 2014 May; 54(4):691-7. PubMed ID: 24856221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rpd3 regulates single-copy origins independently of the rDNA array by opposing Fkh1-mediated origin stimulation.
    He Y; Petrie MV; Zhang H; Peace JM; Aparicio OM
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2212134119. PubMed ID: 36161938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins.
    Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA
    PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NAD(+)-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication.
    Pappas DL; Frisch R; Weinreich M
    Genes Dev; 2004 Apr; 18(7):769-81. PubMed ID: 15082529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replication fork arrest and rDNA silencing are two independent and separable functions of the replication terminator protein Fob1 of Saccharomyces cerevisiae.
    Bairwa NK; Zzaman S; Mohanty BK; Bastia D
    J Biol Chem; 2010 Apr; 285(17):12612-9. PubMed ID: 20179323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The replication timing program in the hands of two HDACs.
    Yoshida K; Lengronne A; Pasero P
    Microb Cell; 2014 Jul; 1(8):273-275. PubMed ID: 28357253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enforcement of a lifespan-sustaining distribution of Sir2 between telomeres, mating-type loci, and rDNA repeats by Rif1.
    Salvi JS; Chan JN; Pettigrew C; Liu TT; Wu JD; Mekhail K
    Aging Cell; 2013 Feb; 12(1):67-75. PubMed ID: 23082874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae.
    Aparicio JG; Viggiani CJ; Gibson DG; Aparicio OM
    Mol Cell Biol; 2004 Jun; 24(11):4769-80. PubMed ID: 15143171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of
    Fine RD; Maqani N; Li M; Franck E; Smith JS
    Genetics; 2019 May; 212(1):75-91. PubMed ID: 30842210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus.
    Pasero P; Bensimon A; Schwob E
    Genes Dev; 2002 Oct; 16(19):2479-84. PubMed ID: 12368258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ARS element inhibits DNA replication through a SIR2-dependent mechanism.
    Crampton A; Chang F; Pappas DL; Frisch RL; Weinreich M
    Mol Cell; 2008 Apr; 30(2):156-66. PubMed ID: 18439895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae.
    Kim S; Benguria A; Lai CY; Jazwinski SM
    Mol Biol Cell; 1999 Oct; 10(10):3125-36. PubMed ID: 10512855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The implication of Sir2 in replicative aging and senescence in Saccharomyces cerevisiae.
    Ha CW; Huh WK
    Aging (Albany NY); 2011 Mar; 3(3):319-24. PubMed ID: 21415463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous rDNA copy number variation modulates Sir2 levels and epigenetic gene silencing.
    Michel AH; Kornmann B; Dubrana K; Shore D
    Genes Dev; 2005 May; 19(10):1199-210. PubMed ID: 15905408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae.
    Knott SR; Viggiani CJ; Tavaré S; Aparicio OM
    Genes Dev; 2009 May; 23(9):1077-90. PubMed ID: 19417103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sir2 suppresses transcription-mediated displacement of Mcm2-7 replicative helicases at the ribosomal DNA repeats.
    Foss EJ; Gatbonton-Schwager T; Thiesen AH; Taylor E; Soriano R; Lao U; MacAlpine DM; Bedalov A
    PLoS Genet; 2019 May; 15(5):e1008138. PubMed ID: 31083663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylation and accessibility of rDNA chromatin in Saccharomyces cerevisiae in (Delta)top1 and (Delta)sir2 mutants.
    Cioci F; Vogelauer M; Camilloni G
    J Mol Biol; 2002 Sep; 322(1):41-52. PubMed ID: 12215413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIR2 suppresses replication gaps and genome instability by balancing replication between repetitive and unique sequences.
    Foss EJ; Lao U; Dalrymple E; Adrianse RL; Loe T; Bedalov A
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):552-557. PubMed ID: 28049846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA.
    Fritze CE; Verschueren K; Strich R; Easton Esposito R
    EMBO J; 1997 Nov; 16(21):6495-509. PubMed ID: 9351831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate.
    Ehrentraut S; Weber JM; Dybowski JN; Hoffmann D; Ehrenhofer-Murray AE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5522-7. PubMed ID: 20133733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.