These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24856249)
1. Non-invasive quantification of lower limb mechanical alignment in flexion. Russell D; Deakin A; Fogg QA; Picard F Comput Aided Surg; 2014; 19(4-6):64-70. PubMed ID: 24856249 [TBL] [Abstract][Full Text] [Related]
2. Quantitative measurement of lower limb mechanical alignment and coronal knee laxity in early flexion. Russell DF; Deakin AH; Fogg QA; Picard F Knee; 2014 Dec; 21(6):1063-8. PubMed ID: 25150912 [TBL] [Abstract][Full Text] [Related]
3. Assessment of knee alignment with varus and valgus force through the range of flexion with non-invasive navigation. Henderson F; Alho R; Riches P; Picard F J Med Eng Technol; 2017 Aug; 41(6):444-459. PubMed ID: 28585460 [TBL] [Abstract][Full Text] [Related]
4. Repeatability and accuracy of a non-invasive method of measuring internal and external rotation of the tibia. Russell DF; Deakin AH; Fogg QA; Picard F Knee Surg Sports Traumatol Arthrosc; 2014 Aug; 22(8):1771-7. PubMed ID: 24370989 [TBL] [Abstract][Full Text] [Related]
5. Rotational and varus-valgus laxity affects kinematics of the normal knee: A cadaveric study. Wada K; Hamada D; Takasago T; Goto T; Tonogai I; Tsuruo Y; Sairyo K J Orthop Surg (Hong Kong); 2019; 27(3):2309499019873726. PubMed ID: 31533546 [TBL] [Abstract][Full Text] [Related]
6. Non-invasive, non-radiological quantificationof anteroposterior knee joint ligamentous laxity: A study in cadavers. Russell DF; Deakin AH; Fogg QA; Picard F Bone Joint Res; 2013; 2(11):233-7. PubMed ID: 24184443 [TBL] [Abstract][Full Text] [Related]
7. Dynamic knee behaviour: does the knee deformity change as it is flexed-an assessment and classification with computer navigation. Deep K; Picard F; Baines J Knee Surg Sports Traumatol Arthrosc; 2016 Nov; 24(11):3575-3583. PubMed ID: 27714437 [TBL] [Abstract][Full Text] [Related]
8. Preoperative varus-valgus kinematic pattern throughout flexion persists more strongly after cruciate-retaining than after posterior-stabilized total knee arthroplasty. Hino K; Oonishi Y; Kutsuna T; Watamori K; Iseki Y; Kiyomatsu H; Watanabe S; Miura H Knee; 2016 Aug; 23(4):637-41. PubMed ID: 27080743 [TBL] [Abstract][Full Text] [Related]
9. Collateral ligament laxity in knees: what is normal? Deep K Clin Orthop Relat Res; 2014 Nov; 472(11):3426-31. PubMed ID: 25115587 [TBL] [Abstract][Full Text] [Related]
10. Implant preloading in extension reduces spring length change in dynamic intraligamentary stabilization: a biomechanical study on passive kinematics of the knee. Häberli J; Voumard B; Kösters C; Delfosse D; Henle P; Eggli S; Zysset P Knee Surg Sports Traumatol Arthrosc; 2018 Dec; 26(12):3582-3592. PubMed ID: 29858655 [TBL] [Abstract][Full Text] [Related]
11. Raising the Joint Line in TKA is Associated With Mid-flexion Laxity: A Study in Cadaver Knees. Luyckx T; Vandenneucker H; Ing LS; Vereecke E; Ing AV; Victor J Clin Orthop Relat Res; 2018 Mar; 476(3):601-611. PubMed ID: 29443845 [TBL] [Abstract][Full Text] [Related]
13. Do varus or valgus outliers have higher forces in the medial or lateral compartments than those which are in-range after a kinematically aligned total knee arthroplasty? limb and joint line alignment after kinematically aligned total knee arthroplasty. Shelton TJ; Nedopil AJ; Howell SM; Hull ML Bone Joint J; 2017 Oct; 99-B(10):1319-1328. PubMed ID: 28963153 [TBL] [Abstract][Full Text] [Related]
14. Primary and coupled motions of the native knee in response to applied varus and valgus load. Gladnick BP; Boorman-Padgett J; Stone K; Kent RN; Cross MB; Mayman DJ; Pearle AD; Imhauser CW Knee; 2016 Jun; 23(3):387-92. PubMed ID: 26875048 [TBL] [Abstract][Full Text] [Related]
15. The implications of mechanical alignment on soft tissue balancing in total knee arthroplasty. Hohman DW; Nodzo SR; Phillips M; Fitz W Knee Surg Sports Traumatol Arthrosc; 2015 Dec; 23(12):3632-6. PubMed ID: 25217310 [TBL] [Abstract][Full Text] [Related]
16. Increases in tibial force imbalance but not changes in tibiofemoral laxities are caused by varus-valgus malalignment of the femoral component in kinematically aligned TKA. Riley J; Roth JD; Howell SM; Hull ML Knee Surg Sports Traumatol Arthrosc; 2018 Nov; 26(11):3238-3248. PubMed ID: 29380010 [TBL] [Abstract][Full Text] [Related]
17. Distal Femoral Valgus Resection Angle in Conventional Total Knee Arthroplasty - a CT Scanogram Study. Basanagoudar PL; Satishkumar BRJ; Pattabiraman K; Kamath D; Av R Arch Bone Jt Surg; 2023; 11(3):180-187. PubMed ID: 37168584 [TBL] [Abstract][Full Text] [Related]
18. Factors affecting intraoperative kinematic patterns and flexion angles in navigated total knee arthroplasty. Ishida K; Shibanuma N; Matsumoto T; Sasaki H; Takayama K; Toda A; Kuroda R; Kurosaka M Knee Surg Sports Traumatol Arthrosc; 2015 Jun; 23(6):1741-7. PubMed ID: 25763851 [TBL] [Abstract][Full Text] [Related]
19. Prediction of post-operative range of motion using intra-operative soft tissue balance in total knee arthroplasty with navigation. Hasegawa M; Takagita H; Sudo A Comput Aided Surg; 2015; 20(1):47-51. PubMed ID: 26291504 [TBL] [Abstract][Full Text] [Related]
20. The effect of anterior cruciate ligament resection on knee biomechanics. Kayani B; Konan S; Ahmed SS; Chang JS; Ayuob A; Haddad FS Bone Joint J; 2020 Apr; 102-B(4):442-448. PubMed ID: 32228066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]