These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 24856290)
1. A comprehensive one-pot synthesis of protected cysteine and selenocysteine SPPS derivatives. Flemer S Protein Pept Lett; 2014; 21(12):1257-64. PubMed ID: 24856290 [TBL] [Abstract][Full Text] [Related]
2. Fmoc-Sec(Xan)-OH: synthesis and utility of Fmoc selenocysteine SPPS derivatives with acid-labile sidechain protection. Flemer S J Pept Sci; 2015 Jan; 21(1):53-9. PubMed ID: 25504629 [TBL] [Abstract][Full Text] [Related]
3. A rapid and efficient method for the synthesis of selectively S-Trt or S-Mmt protected Cys-containing peptides. Stathopoulos P; Papas S; Sakka M; Tzakos AG; Tsikaris V Amino Acids; 2014 May; 46(5):1367-76. PubMed ID: 24609270 [TBL] [Abstract][Full Text] [Related]
4. The use of 2,2'-dithiobis(5-nitropyridine) (DTNP) for deprotection and diselenide formation in protected selenocysteine-containing peptides. Schroll AL; Hondal RJ; Flemer S J Pept Sci; 2012 Mar; 18(3):155-62. PubMed ID: 22249911 [TBL] [Abstract][Full Text] [Related]
5. Influence of pH and flanking serine on the redox potential of S-S and S-Se bridges of Cys-Cys and Cys-Sec peptides. Schneider A; Brandt W; Wessjohann LA Biol Chem; 2007 Oct; 388(10):1099-101. PubMed ID: 17937624 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of selenocysteine peptides and their oxidation to diselenide-bridged compounds. Besse D; Moroder L J Pept Sci; 1997; 3(6):442-53. PubMed ID: 9467972 [TBL] [Abstract][Full Text] [Related]
7. Efficient oxidation of N-protected tryptophan and tryptophanyl-dipeptides by in situ generated dimethyldioxirane provides hexahydropyrroloindoline-containing synthons suitable for peptide synthesis and subsequent tryptathionylation. Blanc A; Xia F; Todorovic M; Perrin DM Amino Acids; 2017 Feb; 49(2):407-414. PubMed ID: 27866290 [TBL] [Abstract][Full Text] [Related]
8. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine? Arnér ES Exp Cell Res; 2010 May; 316(8):1296-303. PubMed ID: 20206159 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of alpha-methyl selenocysteine and its utilization as a glutathione peroxidase mimic. Wehrle RJ; Ste Marie EJ; Hondal RJ; Masterson DS J Pept Sci; 2019 Jun; 25(6):e3173. PubMed ID: 31074180 [TBL] [Abstract][Full Text] [Related]
10. p-Nitrobenzyl protection for cysteine and selenocysteine: a more stable alternative to the acetamidomethyl group. Muttenthaler M; Ramos YG; Feytens D; de Araujo AD; Alewood PF Biopolymers; 2010; 94(4):423-32. PubMed ID: 20593464 [TBL] [Abstract][Full Text] [Related]
11. Facile removal of 4-methoxybenzyl protecting group from selenocysteine. Jenny KA; Ste Marie EJ; Mose G; Ruggles EL; Hondal RJ J Pept Sci; 2019 Oct; 25(10):e3209. PubMed ID: 31410953 [TBL] [Abstract][Full Text] [Related]
12. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences. Calce E; De Luca S Chemistry; 2017 Jan; 23(2):224-233. PubMed ID: 27538566 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of selenocysteine and its derivatives with an emphasis on selenenylsulfide (-Se-S-) formation. Wessjohann LA; Schneider A Chem Biodivers; 2008 Mar; 5(3):375-88. PubMed ID: 18357547 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of selenocysteine and selenomethionine derivatives from sulfur-containing amino acids. Iwaoka M; Ooka R; Nakazato T; Yoshida S; Oishi S Chem Biodivers; 2008 Mar; 5(3):359-74. PubMed ID: 18357559 [TBL] [Abstract][Full Text] [Related]
15. Racemisation of N-Fmoc phenylglycine under mild microwave-SPPS and conventional stepwise SPPS conditions: attempts to develop strategies for overcoming this. Elsawy MA; Hewage C; Walker B J Pept Sci; 2012 May; 18(5):302-11. PubMed ID: 22451378 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of a selenocysteine-containing peptide by native chemical ligation. Gieselman MD; Xie L; van Der Donk WA Org Lett; 2001 May; 3(9):1331-4. PubMed ID: 11348227 [TBL] [Abstract][Full Text] [Related]
17. Peptide Hydrazides as Thioester Equivalents for the Chemical Synthesis of Proteins. Wang Y; Li YM Methods Mol Biol; 2020; 2133():119-140. PubMed ID: 32144665 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic studies on the mechanism of stereoselective lanthionine formation. Zhu Y; Gieselman MD; Zhou H; Averin O; van der Donk WA Org Biomol Chem; 2003 Oct; 1(19):3304-15. PubMed ID: 14584794 [TBL] [Abstract][Full Text] [Related]
19. Solid-phase synthesis of reduced selenocysteine tetrapeptides and their oxidized analogs containing selenenylsulfide eight-membered rings. Wessjohann LA; Schneider A; Kaluđerović GN; Brandt W Mol Divers; 2013 Aug; 17(3):537-45. PubMed ID: 23729025 [TBL] [Abstract][Full Text] [Related]
20. Direct access to side chain N,N'-diaminoalkylated derivatives of basic amino acids suitable for solid-phase peptide synthesis. Pitteloud JP; Bionda N; Cudic P Amino Acids; 2013 Feb; 44(2):321-33. PubMed ID: 22714010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]