These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 24856684)
1. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source. Izumida Y; Okuda K Phys Rev Lett; 2014 May; 112(18):180603. PubMed ID: 24856684 [TBL] [Abstract][Full Text] [Related]
2. Optimization in finite-reservoir finite-time thermodynamics. Wang Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062140. PubMed ID: 25615077 [TBL] [Abstract][Full Text] [Related]
3. Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Wang Y; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532 [TBL] [Abstract][Full Text] [Related]
4. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines. Sheng S; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487 [TBL] [Abstract][Full Text] [Related]
5. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics. Sheng S; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012129. PubMed ID: 24580194 [TBL] [Abstract][Full Text] [Related]
6. Efficiency at maximum power output of quantum heat engines under finite-time operation. Wang J; He J; Wu Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076 [TBL] [Abstract][Full Text] [Related]
7. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Chen L; Meng Z; Ge Y; Wu F Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622 [TBL] [Abstract][Full Text] [Related]
8. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power. Long R; Liu W Phys Rev E; 2016 Nov; 94(5-1):052114. PubMed ID: 27967103 [TBL] [Abstract][Full Text] [Related]
9. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
10. Finite-Time Thermodynamic Model for Evaluating Heat Engines in Ocean Thermal Energy Conversion. Yasunaga T; Ikegami Y Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285986 [TBL] [Abstract][Full Text] [Related]
11. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Qi C; Ding Z; Chen L; Ge Y; Feng H Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398 [TBL] [Abstract][Full Text] [Related]
12. Optimizing work output for finite-sized heat reservoirs: Beyond linear response. Wang Y Phys Rev E; 2016 Jan; 93(1):012120. PubMed ID: 26871037 [TBL] [Abstract][Full Text] [Related]
13. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047 [TBL] [Abstract][Full Text] [Related]
14. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine. Ma YH Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771 [TBL] [Abstract][Full Text] [Related]
15. Efficiency at and near maximum power of low-dissipation heat engines. Holubec V; Ryabov A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665 [TBL] [Abstract][Full Text] [Related]
16. Efficiency at maximum power of thermally coupled heat engines. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041144. PubMed ID: 22680454 [TBL] [Abstract][Full Text] [Related]
17. Optimal performance of heat engines with a finite source or sink and inequalities between means. Johal RS Phys Rev E; 2016 Jul; 94(1-1):012123. PubMed ID: 27575093 [TBL] [Abstract][Full Text] [Related]
18. Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms. Ye Z; Hu Y; He J; Wang J Sci Rep; 2017 Jul; 7(1):6289. PubMed ID: 28740216 [TBL] [Abstract][Full Text] [Related]
19. Most efficient quantum thermoelectric at finite power output. Whitney RS Phys Rev Lett; 2014 Apr; 112(13):130601. PubMed ID: 24745399 [TBL] [Abstract][Full Text] [Related]
20. Work and power fluctuations in a critical heat engine. Holubec V; Ryabov A Phys Rev E; 2017 Sep; 96(3-1):030102. PubMed ID: 29347002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]