These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24856706)

  • 1. Universal fractional noncubic power law for density of metallic glasses.
    Zeng Q; Kono Y; Lin Y; Zeng Z; Wang J; Sinogeikin SV; Park C; Meng Y; Yang W; Mao HK; Mao WL
    Phys Rev Lett; 2014 May; 112(18):185502. PubMed ID: 24856706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of Noncubic Scaling Law in Disordered Granular Packing.
    Xia C; Li J; Kou B; Cao Y; Li Z; Xiao X; Fu Y; Xiao T; Hong L; Zhang J; Kob W; Wang Y
    Phys Rev Lett; 2017 Jun; 118(23):238002. PubMed ID: 28644675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General 2.5 power law of metallic glasses.
    Zeng Q; Lin Y; Liu Y; Zeng Z; Shi CY; Zhang B; Lou H; Sinogeikin SV; Kono Y; Kenney-Benson C; Park C; Yang W; Wang W; Sheng H; Mao HK; Mao WL
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1714-8. PubMed ID: 26831105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of 2.5 power law for fractal packing in metallic glasses.
    Feng J; Chen P; Li M
    J Phys Condens Matter; 2018 Jun; 30(25):255402. PubMed ID: 29757165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-density to high-density transition in Ce75Al23Si2 metallic glass.
    Zeng QS; Fang YZ; Lou HB; Gong Y; Wang XD; Yang K; Li AG; Yan S; Lathe C; Wu FM; Yu XH; Jiang JZ
    J Phys Condens Matter; 2010 Sep; 22(37):375404. PubMed ID: 21403196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power-law scaling and fractal nature of medium-range order in metallic glasses.
    Ma D; Stoica AD; Wang XL
    Nat Mater; 2009 Jan; 8(1):30-4. PubMed ID: 19060888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal amorphous-amorphous transition in GexSe100-x glasses under pressure.
    Yildirim C; Micoulaut M; Boolchand P; Kantor I; Mathon O; Gaspard JP; Irifune T; Raty JY
    Sci Rep; 2016 Jun; 6():27317. PubMed ID: 27273197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power laws in pressure-induced structural change of glasses.
    Zhang H; Qiao K; Han Y
    Nat Commun; 2020 Apr; 11(1):2005. PubMed ID: 32332710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic modeling to optimize composition and characterize structure of Ni-Zr-Mo metallic glasses.
    Yang MH; Li SN; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2015 May; 17(20):13355-65. PubMed ID: 25923843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal structural parameter to quantitatively predict metallic glass properties.
    Ding J; Cheng YQ; Sheng H; Asta M; Ritchie RO; Ma E
    Nat Commun; 2016 Dec; 7():13733. PubMed ID: 27941922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamorphism in a metallic glass.
    Sheng HW; Liu HZ; Cheng YQ; Wen J; Lee PL; Luo WK; Shastri SD; Ma E
    Nat Mater; 2007 Mar; 6(3):192-7. PubMed ID: 17310140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of zirconium metallic glass.
    Zhang J; Zhao Y
    Nature; 2004 Jul; 430(6997):332-5. PubMed ID: 15254533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the question of fractal packing structure in metallic glasses.
    Ding J; Asta M; Ritchie RO
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8458-8463. PubMed ID: 28743756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses.
    Lou HB; Fang YK; Zeng QS; Lu YH; Wang XD; Cao QP; Yang K; Yu XH; Zheng L; Zhao YD; Chu WS; Hu TD; Wu ZY; Ahuja R; Jiang JZ
    Sci Rep; 2012; 2():376. PubMed ID: 22530094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation assisted design of favored composition for ternary Mg-Cu-Y metallic glass formation.
    Wang Q; Li JH; Liu BX
    Phys Chem Chem Phys; 2015 Jun; 17(22):14879-89. PubMed ID: 25981154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation of bulk metallic glasses studied by mechanical spectroscopy.
    Qiao J; Pelletier JM; Casalini R
    J Phys Chem B; 2013 Oct; 117(43):13658-66. PubMed ID: 24070200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure.
    Luo Q; Garbarino G; Sun B; Fan D; Zhang Y; Wang Z; Sun Y; Jiao J; Li X; Li P; Mattern N; Eckert J; Shen J
    Nat Commun; 2015 Feb; 6():5703. PubMed ID: 25641091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying and characterising the different structural length scales in liquids and glasses: an experimental approach.
    Salmon PS; Zeidler A
    Phys Chem Chem Phys; 2013 Oct; 15(37):15286-308. PubMed ID: 23938952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in transmission electron microscopy: in situ straining and in situ compression experiments on metallic glasses.
    De Hosson JT
    Microsc Res Tech; 2009 Mar; 72(3):250-60. PubMed ID: 19189312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic Deformation in Metallic Glasses.
    Sha ZD; Qu SX; Liu ZS; Wang TJ; Gao H
    Nano Lett; 2015 Oct; 15(10):7010-5. PubMed ID: 26422317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.