These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24856957)

  • 1. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.
    Su C; Chen Y; Wang W; Ran R; Shao Z; Diniz da Costa JC; Liu S
    Environ Sci Technol; 2014 Jun; 48(12):7122-7. PubMed ID: 24856957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.
    Wang W; Su C; Ran R; Zhao B; Shao Z; Tade MO; Liu S
    ChemSusChem; 2014 Jun; 7(6):1719-28. PubMed ID: 24798121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes.
    Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA
    Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new anode for solid oxide fuel cells with enhanced OCV under methane operation.
    Ruiz-Morales JC; Canales-Vázquez J; Savaniu C; Marrero-López D; Núñez P; Zhou W; Irvine JT
    Phys Chem Chem Phys; 2007 Apr; 9(15):1821-30. PubMed ID: 17415494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infiltrated Ni
    Shi N; Xie Y; Yang Y; Huan D; Pan Y; Peng R; Xia C; Chen C; Zhan Z; Lu Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4943-4954. PubMed ID: 33492121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.
    Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA
    Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. La(0.4)Ba(0.6)Fe(0.8)Zn(0.2)O(3-delta) as cathode in solid oxide fuel cells for simultaneous NO reduction and electricity generation.
    Zhou R; Bu Y; Xu D; Zhong Q
    Environ Technol; 2014; 35(5-8):925-30. PubMed ID: 24645475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.
    Pomfret MB; Steinhurst DA; Owrutsky JC
    J Phys Chem Lett; 2013 Apr; 4(8):1310-4. PubMed ID: 26282145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A carbon-air battery for high power generation.
    Yang B; Ran R; Zhong Y; Su C; Tadé MO; Shao Z
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3722-5. PubMed ID: 25620573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-performance Ni-CeO
    Sasaki K; Takahashi I; Kuramoto K; Shin-Mura K
    R Soc Open Sci; 2022 Jul; 9(7):220227. PubMed ID: 35875470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells.
    Wang W; Wang F; Chen Y; Qu J; Tadé MO; Shao Z
    ChemSusChem; 2015 Sep; 8(17):2978-86. PubMed ID: 25925556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuel oxidation efficiencies and exhaust composition in solid oxide fuel cells.
    Pomfret MB; Demircan O; Sukeshini AM; Walker RA
    Environ Sci Technol; 2006 Sep; 40(17):5574-9. PubMed ID: 16999142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocomposite Catalyst for High-Performance and Durable Intermediate-Temperature Methane-Fueled Metal-Supported Solid Oxide Fuel Cells.
    Liu F; Diercks D; Hussain AM; Dale N; Furuya Y; Miura Y; Fukuyama Y; Duan C
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53840-53849. PubMed ID: 36440888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis.
    Randolph KL; Dean AM
    Phys Chem Chem Phys; 2007 Aug; 9(31):4245-58. PubMed ID: 17687473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.
    Jing Y; Qin H; Liu Q; Singh M; Zhu B
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5102-5. PubMed ID: 22905585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.
    Aziznia A; Oloman CW; Gyenge EL
    ChemSusChem; 2013 May; 6(5):847-55. PubMed ID: 23589385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells.
    Ding H; Tao Z; Liu S; Zhang J
    Sci Rep; 2015 Dec; 5():18129. PubMed ID: 26648509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.