These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 24857029)
1. Can we enhance fracture vascularity: What is the evidence? Pountos I; Panteli M; Panagiotopoulos E; Jones E; Giannoudis PV Injury; 2014 Jun; 45 Suppl 2():S49-57. PubMed ID: 24857029 [TBL] [Abstract][Full Text] [Related]
2. Stem cell-based therapies for bone repair. Milner PI; Clegg PD; Stewart MC Vet Clin North Am Equine Pract; 2011 Aug; 27(2):299-314. PubMed ID: 21872760 [TBL] [Abstract][Full Text] [Related]
3. A hybrid bioregulatory model of angiogenesis during bone fracture healing. Peiffer V; Gerisch A; Vandepitte D; Van Oosterwyck H; Geris L Biomech Model Mechanobiol; 2011 Jun; 10(3):383-95. PubMed ID: 20827500 [TBL] [Abstract][Full Text] [Related]
4. Basic science of bone healing. Sathyendra V; Darowish M Hand Clin; 2013 Nov; 29(4):473-81. PubMed ID: 24209946 [TBL] [Abstract][Full Text] [Related]
5. Tissue engineering approaches for bone repair: concepts and evidence. Schroeder JE; Mosheiff R Injury; 2011 Jun; 42(6):609-13. PubMed ID: 21489529 [TBL] [Abstract][Full Text] [Related]
6. The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair. Towler DA Curr Osteoporos Rep; 2008 Jun; 6(2):67-71. PubMed ID: 18778566 [TBL] [Abstract][Full Text] [Related]
7. Interactions between MSCs and immune cells: implications for bone healing. Kovach TK; Dighe AS; Lobo PI; Cui Q J Immunol Res; 2015; 2015():752510. PubMed ID: 26000315 [TBL] [Abstract][Full Text] [Related]
8. VEGF modulates angiogenesis and osteogenesis in shockwave-promoted fracture healing in rabbits. Wang CJ; Huang KE; Sun YC; Yang YJ; Ko JY; Weng LH; Wang FS J Surg Res; 2011 Nov; 171(1):114-9. PubMed ID: 20452608 [TBL] [Abstract][Full Text] [Related]
9. Role of angiogenesis in bone repair. Saran U; Gemini Piperni S; Chatterjee S Arch Biochem Biophys; 2014 Nov; 561():109-17. PubMed ID: 25034215 [TBL] [Abstract][Full Text] [Related]
10. Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria. Holstein JH; Becker SC; Fiedler M; Garcia P; Histing T; Klein M; Laschke MW; Corsten M; Pohlemann T; Menger MD Injury; 2011 Aug; 42(8):765-71. PubMed ID: 21156316 [TBL] [Abstract][Full Text] [Related]
11. Bone regeneration and fracture healing. Experience with distraction osteogenesis model. Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639 [TBL] [Abstract][Full Text] [Related]
12. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. van Gastel N; Torrekens S; Roberts SJ; Moermans K; Schrooten J; Carmeliet P; Luttun A; Luyten FP; Carmeliet G Stem Cells; 2012 Nov; 30(11):2460-71. PubMed ID: 22911908 [TBL] [Abstract][Full Text] [Related]
13. Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats. Wang CY; Yang HB; Hsu HS; Chen LL; Tsai CC; Tsai KS; Yew TL; Kao YH; Hung SC J Tissue Eng Regen Med; 2012 Jul; 6(7):559-69. PubMed ID: 21916015 [TBL] [Abstract][Full Text] [Related]
14. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. Geiger F; Bertram H; Berger I; Lorenz H; Wall O; Eckhardt C; Simank HG; Richter W J Bone Miner Res; 2005 Nov; 20(11):2028-35. PubMed ID: 16234976 [TBL] [Abstract][Full Text] [Related]
15. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Keramaris NC; Calori GM; Nikolaou VS; Schemitsch EH; Giannoudis PV Injury; 2008 Sep; 39 Suppl 2():S45-57. PubMed ID: 18804573 [TBL] [Abstract][Full Text] [Related]
16. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Stegen S; van Gastel N; Carmeliet G Bone; 2015 Jan; 70():19-27. PubMed ID: 25263520 [TBL] [Abstract][Full Text] [Related]
17. Hypoxia and mesenchymal stromal cells as key drivers of initial fracture healing in an equine in vitro fracture hematoma model. Pfeiffenberger M; Bartsch J; Hoff P; Ponomarev I; Barnewitz D; Thöne-Reineke C; Buttgereit F; Gaber T; Lang A PLoS One; 2019; 14(4):e0214276. PubMed ID: 30947253 [TBL] [Abstract][Full Text] [Related]
18. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Kitaori T; Ito H; Schwarz EM; Tsutsumi R; Yoshitomi H; Oishi S; Nakano M; Fujii N; Nagasawa T; Nakamura T Arthritis Rheum; 2009 Mar; 60(3):813-23. PubMed ID: 19248097 [TBL] [Abstract][Full Text] [Related]
19. Exercise enhances angiogenesis during bone defect healing in mice. Holstein JH; Becker SC; Fiedler M; Scheuer C; Garcia P; Histing T; Klein M; Pohlemann T; Menger MD J Orthop Res; 2011 Jul; 29(7):1086-92. PubMed ID: 21259340 [TBL] [Abstract][Full Text] [Related]
20. The healing potential of the periosteum molecular aspects. Malizos KN; Papatheodorou LK Injury; 2005 Nov; 36 Suppl 3():S13-9. PubMed ID: 16188544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]