These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24857029)

  • 21. Local transplantation of granulocyte colony-stimulating factor-mobilized human peripheral blood mononuclear cells for unhealing bone fractures.
    Fukui T; Matsumoto T; Mifune Y; Shoji T; Kuroda T; Kawakami Y; Kawamoto A; Ii M; Kawamata S; Kurosaka M; Asahara T; Kuroda R
    Cell Transplant; 2012; 21(4):707-21. PubMed ID: 21929873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The potential of gene therapy for fracture healing in osteoporosis.
    Egermann M; Schneider E; Evans CH; Baltzer AW
    Osteoporos Int; 2005 Mar; 16 Suppl 2():S120-8. PubMed ID: 15654580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting Osteogenesis-Angiogenesis Coupling for Bone Repair.
    Liu C; Castillo AB
    J Am Acad Orthop Surg; 2018 Apr; 26(7):e153-e155. PubMed ID: 29489598
    [No Abstract]   [Full Text] [Related]  

  • 24. Role of angiogenesis on bone formation.
    Portal-Núñez S; Lozano D; Esbrit P
    Histol Histopathol; 2012 May; 27(5):559-66. PubMed ID: 22419020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of the nutrient supply in fracture healing.
    Chen G; Niemeyer F; Wehner T; Simon U; Schuetz MA; Pearcy MJ; Claes LE
    J Biomech; 2009 Nov; 42(15):2575-83. PubMed ID: 19660757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple roles of tumor necrosis factor-alpha in fracture healing.
    Karnes JM; Daffner SD; Watkins CM
    Bone; 2015 Sep; 78():87-93. PubMed ID: 25959413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formononetin promotes early fracture healing through stimulating angiogenesis by up-regulating VEGFR-2/Flk-1 in a rat fracture model.
    Huh JE; Kwon NH; Baek YH; Lee JD; Choi DY; Jingushi S; Kim KI; Park DS
    Int Immunopharmacol; 2009 Nov; 9(12):1357-65. PubMed ID: 19695348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence molecular tomography enables in vivo visualization and quantification of nonunion fracture repair induced by genetically engineered mesenchymal stem cells.
    Zilberman Y; Kallai I; Gafni Y; Pelled G; Kossodo S; Yared W; Gazit D
    J Orthop Res; 2008 Apr; 26(4):522-30. PubMed ID: 17985393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical impact of circulating CD34-positive cells on bone regeneration and healing.
    Kuroda R; Matsumoto T; Kawakami Y; Fukui T; Mifune Y; Kurosaka M
    Tissue Eng Part B Rev; 2014 Jun; 20(3):190-9. PubMed ID: 24372338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of inhibitory molecules in fracture healing.
    Dimitriou R; Tsiridis E; Carr I; Simpson H; Giannoudis PV
    Injury; 2006 Apr; 37 Suppl 1():S20-9. PubMed ID: 16616754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Angiogenesis in fracture repair.
    Glowacki J
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S82-9. PubMed ID: 9917629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fracture Healing and its Disturbances. A Literature Review.
    Szczęsny G
    Ortop Traumatol Rehabil; 2015 Oct; 17(5):437-54. PubMed ID: 26751744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exogenous phytoestrogenic molecule icaritin incorporated into a porous scaffold for enhancing bone defect repair.
    Wang XL; Xie XH; Zhang G; Chen SH; Yao D; He K; Wang XH; Yao XS; Leng Y; Fung KP; Leung KS; Qin L
    J Orthop Res; 2013 Jan; 31(1):164-72. PubMed ID: 22807243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypoxia induces osteogenic/angiogenic responses of bone marrow-derived mesenchymal stromal cells seeded on bone-derived scaffolds via ERK1/2 and p38 pathways.
    Zhou Y; Guan X; Wang H; Zhu Z; Li C; Wu S; Yu H
    Biotechnol Bioeng; 2013 Jun; 110(6):1794-804. PubMed ID: 23296944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues.
    Tarkka T; Sipola A; Jämsä T; Soini Y; Ylä-Herttuala S; Tuukkanen J; Hautala T
    J Gene Med; 2003 Jul; 5(7):560-6. PubMed ID: 12825195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice.
    Duvall CL; Taylor WR; Weiss D; Wojtowicz AM; Guldberg RE
    J Bone Miner Res; 2007 Feb; 22(2):286-97. PubMed ID: 17087627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The temporal and spatial development of vascularity in a healing displaced fracture.
    Yuasa M; Mignemi NA; Barnett JV; Cates JM; Nyman JS; Okawa A; Yoshii T; Schwartz HS; Stutz CM; Schoenecker JG
    Bone; 2014 Oct; 67():208-21. PubMed ID: 25016962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Biochemical markers of bone turnover. New aspect. Changes in bone turnover markers during fracture healing].
    Ichimura S; Hasegawa M
    Clin Calcium; 2009 Aug; 19(8):1102-8. PubMed ID: 19638693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Angiogenesis in bone fracture healing: a bioregulatory model.
    Geris L; Gerisch A; Sloten JV; Weiner R; Oosterwyck HV
    J Theor Biol; 2008 Mar; 251(1):137-58. PubMed ID: 18155732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fracture healing in the elderly patient.
    Gruber R; Koch H; Doll BA; Tegtmeier F; Einhorn TA; Hollinger JO
    Exp Gerontol; 2006 Nov; 41(11):1080-93. PubMed ID: 17092679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.