BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 24857267)

  • 1. Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions.
    Kim J; Kim BK; Cho SK; Bard AJ
    J Am Chem Soc; 2014 Jun; 136(23):8173-6. PubMed ID: 24857267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Apr; 134(16):7102-8. PubMed ID: 22452267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface.
    Ortiz-Ledón CA; Zoski CG
    Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrodeposition of Single Nanometer-Size Pt Nanoparticles at a Tunneling Ultramicroelectrode and Determination of Fast Heterogeneous Kinetics for Ru(NH3)6(3+) Reduction.
    Kim J; Bard AJ
    J Am Chem Soc; 2016 Jan; 138(3):975-9. PubMed ID: 26728328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode.
    Jung AR; Lee S; Joo JW; Shin C; Bae H; Moon SG; Kwon SJ
    J Am Chem Soc; 2015 Feb; 137(5):1762-5. PubMed ID: 25607323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode.
    Shin C; Park TE; Park C; Kwon SJ
    Chemphyschem; 2016 Jun; 17(11):1637-41. PubMed ID: 26955784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles.
    Dasari R; Robinson DA; Stevenson KJ
    J Am Chem Soc; 2013 Jan; 135(2):570-3. PubMed ID: 23270578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles.
    Kleijn SE; Serrano-Bou B; Yanson AI; Koper MT
    Langmuir; 2013 Feb; 29(6):2054-64. PubMed ID: 23320415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory and experiments for voltammetric and SECM investigations and application to ORR electrocatalysis at nanoelectrode ensembles of ultramicroelectrode dimensions.
    Fernández JL; Wijesinghe M; Zoski CG
    Anal Chem; 2015 Jan; 87(2):1066-74. PubMed ID: 25495486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Jul; 134(26):10777-9. PubMed ID: 22702801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes.
    Dasari R; Tai K; Robinson DA; Stevenson KJ
    ACS Nano; 2014 May; 8(5):4539-46. PubMed ID: 24708257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes.
    Kwon SJ; Fan FR; Bard AJ
    J Am Chem Soc; 2010 Sep; 132(38):13165-7. PubMed ID: 20809574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes.
    Dasari R; Walther B; Robinson DA; Stevenson KJ
    Langmuir; 2013 Dec; 29(48):15100-6. PubMed ID: 24188022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode.
    Lebègue E; Anderson CM; Dick JE; Webb LJ; Bard AJ
    Langmuir; 2015 Oct; 31(42):11734-9. PubMed ID: 26474107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of apparent diffusion coefficients within ultrathin nafion Langmuir-Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry.
    Bertoncello P; Ciani I; Li F; Unwin PR
    Langmuir; 2006 Dec; 22(25):10380-8. PubMed ID: 17129006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Controlled Nanoparticle Collision Experiments.
    Wang Q; Bae JH; Nepomnyashchii AB; Jia R; Zhang S; Mirkin MV
    J Phys Chem Lett; 2020 Apr; 11(8):2972-2976. PubMed ID: 32216279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode.
    Zhou H; Park JH; Fan FR; Bard AJ
    J Am Chem Soc; 2012 Aug; 134(32):13212-5. PubMed ID: 22839524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Prussian Blue modified ultramicroelectrode for GOD imaging using scanning electrochemical microscopy.
    Li J; Yu J
    Bioelectrochemistry; 2008 Feb; 72(1):102-6. PubMed ID: 18203668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Au disk nanoelectrode by electrochemical deposition in a nanopore.
    Jena BK; Percival SJ; Zhang B
    Anal Chem; 2010 Aug; 82(15):6737-43. PubMed ID: 20608658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.