These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 24857478)

  • 21. Shear bond strength between feldspathic CAD/CAM ceramic and human dentine for two adhesive cements.
    Graiff L; Piovan C; Vigolo P; Mason PN
    J Prosthodont; 2008 Jun; 17(4):294-9. PubMed ID: 18266655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shear bond strength between resin and zirconia with two different silane blends.
    Lung CY; Kukk E; Matinlinna JP
    Acta Odontol Scand; 2012 Sep; 70(5):405-13. PubMed ID: 22401474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning.
    Amaral R; Ozcan M; Bottino MA; Valandro LF
    Dent Mater; 2006 Mar; 22(3):283-90. PubMed ID: 16039705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites.
    Karabela MM; Sideridou ID
    Dent Mater; 2008 Dec; 24(12):1631-9. PubMed ID: 18462785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.
    Hesaraki S
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():535-45. PubMed ID: 27040248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microtensile bond strength of a resin cement to feldpathic ceramic after different etching and silanization regimens in dry and aged conditions.
    Brentel AS; Ozcan M; Valandro LF; Alarça LG; Amaral R; Bottino MA
    Dent Mater; 2007 Nov; 23(11):1323-31. PubMed ID: 17188745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis.
    Costa DO; Dixon SJ; Rizkalla AS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1490-9. PubMed ID: 22296410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement.
    Wong CT; Lu WW; Chan WK; Cheung KM; Luk KD; Lu DS; Rabie AB; Deng LF; Leong JC
    J Biomed Mater Res A; 2004 Mar; 68(3):513-21. PubMed ID: 14762931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adhesive bone cement containing hydroxyapatite particle as bone compatible filler.
    Ishihara K; Arai H; Nakabayashi N; Morita S; Furuya K
    J Biomed Mater Res; 1992 Jul; 26(7):937-45. PubMed ID: 1607374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid.
    Sa Y; Yang F; de Wijn JR; Wang Y; Wolke JG; Jansen JA
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():190-8. PubMed ID: 26838840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Static mechanical properties of hydroxyapatite (HA) powder-filled acrylic bone cements: effect of type of HA powder.
    Morejón L; Mendizábal AE; García-Menocal JA; Ginebra MP; Aparicio C; Mur FJ; Marsal M; Davidenko N; Ballesteros ME; Planell JA
    J Biomed Mater Res B Appl Biomater; 2005 Feb; 72(2):345-52. PubMed ID: 15529327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interfacial strength of novel PMMA/HA/nanoclay bone cement.
    Wang CX; Tong J
    Biomed Mater Eng; 2008; 18(6):367-75. PubMed ID: 19197113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a strontium-containing hydroxyapatite bone cement.
    Guo D; Xu K; Zhao X; Han Y
    Biomaterials; 2005 Jul; 26(19):4073-83. PubMed ID: 15664634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies.
    Neira IS; Kolen'ko YV; Kommareddy KP; Manjubala I; Yoshimura M; Guitián F
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3276-84. PubMed ID: 21038864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroxyapatite impregnated bone cement: in vitro and in vivo studies.
    Kwon SY; Kim YS; Woo YK; Kim SS; Park JB
    Biomed Mater Eng; 1997; 7(2):129-40. PubMed ID: 9262826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of surface treatment of titanium posts on the tensile bond strength.
    Schmage P; Sohn J; Ozcan M; Nergiz I
    Dent Mater; 2006 Feb; 22(2):189-94. PubMed ID: 16039707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adhesion enhancement of steel fibers to acrylic bone cement through a silane coupling agent.
    Kotha SP; Lieberman M; Vickers A; Schmid SR; Mason JJ
    J Biomed Mater Res A; 2006 Jan; 76(1):111-9. PubMed ID: 16224777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of imidazolium-containing mono-methacrylates as polymerizable antibacterial agents for acrylic bone cements.
    Zhu W; Liu F; He J
    J Mech Behav Biomed Mater; 2017 Oct; 74():176-182. PubMed ID: 28601760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model.
    Ni GX; Choy YS; Lu WW; Ngan AH; Chiu KY; Li ZY; Tang B; Luk KD
    Biomaterials; 2006 Mar; 27(9):1963-70. PubMed ID: 16226309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.