These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 24857486)
1. Creep of trabecular bone from the human proximal tibia. Novitskaya E; Zin C; Chang N; Cory E; Chen P; D'Lima D; Sah RL; McKittrick J Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():219-27. PubMed ID: 24857486 [TBL] [Abstract][Full Text] [Related]
2. Creep contributes to the fatigue behavior of bovine trabecular bone. Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444 [TBL] [Abstract][Full Text] [Related]
3. Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone. Bowman SM; Gibson LJ; Hayes WC; McMahon TA J Biomech Eng; 1999 Apr; 121(2):253-8. PubMed ID: 10211462 [TBL] [Abstract][Full Text] [Related]
4. Creep does not contribute to fatigue in bovine trabecular bone. Moore TL; O'Brien FJ; Gibson LJ J Biomech Eng; 2004 Jun; 126(3):321-9. PubMed ID: 15341168 [TBL] [Abstract][Full Text] [Related]
5. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone. Kim DG; Shertok D; Ching Tee B; Yeni YN J Biomech; 2011 Jun; 44(9):1660-5. PubMed ID: 21481880 [TBL] [Abstract][Full Text] [Related]
6. Effects of bone damage on creep behaviours of human vertebral trabeculae. O'Callaghan P; Szarko M; Wang Y; Luo J Bone; 2018 Jan; 106():204-210. PubMed ID: 29081379 [TBL] [Abstract][Full Text] [Related]
7. Micro-compression: a novel technique for the nondestructive assessment of local bone failure. Müller R; Gerber SC; Hayes WC Technol Health Care; 1998 Dec; 6(5-6):433-44. PubMed ID: 10100946 [TBL] [Abstract][Full Text] [Related]
8. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model. Weatherholt AM; Fuchs RK; Warden SJ Bone; 2013 Jan; 52(1):372-9. PubMed ID: 23111313 [TBL] [Abstract][Full Text] [Related]
9. Trabecular bone microdamage and microstructural stresses under uniaxial compression. Nagaraja S; Couse TL; Guldberg RE J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291 [TBL] [Abstract][Full Text] [Related]
10. Compressive creep behavior of bovine trabecular bone. Bowman SM; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA J Biomech; 1994 Mar; 27(3):301-10. PubMed ID: 8051190 [TBL] [Abstract][Full Text] [Related]
11. Time Dependent Behaviour of Trabecular Bone at Multiple Load Levels. Xie S; Manda K; Wallace RJ; Levrero-Florencio F; Simpson AHRW; Pankaj P Ann Biomed Eng; 2017 May; 45(5):1219-1226. PubMed ID: 28130701 [TBL] [Abstract][Full Text] [Related]
12. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849 [TBL] [Abstract][Full Text] [Related]
13. Finite element modeling of damage accumulation in trabecular bone under cyclic loading. Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682 [TBL] [Abstract][Full Text] [Related]
14. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression. Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978 [TBL] [Abstract][Full Text] [Related]
15. Age variations in the properties of human tibial trabecular bone and cartilage. Ding M Acta Orthop Scand Suppl; 2000 Jun; 292():1-45. PubMed ID: 10951715 [TBL] [Abstract][Full Text] [Related]
16. Accuracy of trabecular structure by HR-pQCT compared to gold standard μCT in the radius and tibia of patients with osteoporosis and long-term bisphosphonate therapy. Krause M; Museyko O; Breer S; Wulff B; Duckstein C; Vettorazzi E; Glueer C; Püschel K; Engelke K; Amling M Osteoporos Int; 2014 May; 25(5):1595-606. PubMed ID: 24566588 [TBL] [Abstract][Full Text] [Related]
17. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). Zhou B; Liu XS; Wang J; Lu XL; Fields AJ; Guo XE J Biomech; 2014 Feb; 47(3):702-8. PubMed ID: 24360196 [TBL] [Abstract][Full Text] [Related]
18. Trabecular bone strain changes associated with subchondral stiffening of the proximal tibia. McKinley TO; Bay BK J Biomech; 2003 Feb; 36(2):155-63. PubMed ID: 12547352 [TBL] [Abstract][Full Text] [Related]
19. Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone. Shi X; Wang X; Niebur GL Ann Biomed Eng; 2009 Feb; 37(2):354-62. PubMed ID: 19082893 [TBL] [Abstract][Full Text] [Related]
20. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Dalzell N; Kaptoge S; Morris N; Berthier A; Koller B; Braak L; van Rietbergen B; Reeve J Osteoporos Int; 2009 Oct; 20(10):1683-94. PubMed ID: 19152051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]