These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24857754)

  • 41. Activators of AMPK: not just for type II diabetes.
    Zaks I; Getter T; Gruzman A
    Future Med Chem; 2014 Jul; 6(11):1325-53. PubMed ID: 25163002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Screening methods for AMP-activated protein kinase modulators: a patent review.
    Kim J; Shin J; Ha J
    Expert Opin Ther Pat; 2015 Mar; 25(3):261-77. PubMed ID: 25535089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein tyrosine phosphatase 1B inhibition as a potential therapeutic target for chronic wounds in diabetes.
    Figueiredo A; Leal EC; Carvalho E
    Pharmacol Res; 2020 Sep; 159():104977. PubMed ID: 32504834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adenosine Monophosphate-activated Protein Kinase (AMPK) Activators For the Prevention, Treatment and Potential Reversal of Pathological Pain.
    Price TJ; Das V; Dussor G
    Curr Drug Targets; 2016; 17(8):908-20. PubMed ID: 26521775
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel biological therapies for the treatment of diabetic foot ulcers.
    Adeghate J; Nurulain S; Tekes K; Fehér E; Kalász H; Adeghate E
    Expert Opin Biol Ther; 2017 Aug; 17(8):979-987. PubMed ID: 28532226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel therapeutic targets for diabetes-related wounds or ulcers: an update on preclinical and clinical research.
    Golledge J; Thanigaimani S
    Expert Opin Ther Targets; 2021 Dec; 25(12):1061-1075. PubMed ID: 34873970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advancing pharmacotherapy for diabetic foot ulcers.
    Eleftheriadou I; Tentolouris A; Tentolouris N; Papanas N
    Expert Opin Pharmacother; 2019 Jun; 20(9):1153-1160. PubMed ID: 30958725
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials.
    Lv H; Liu J; Zhen C; Wang Y; Wei Y; Ren W; Shang P
    Cell Prolif; 2021 Mar; 54(3):e12982. PubMed ID: 33554390
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting AMPK for the Alleviation of Pathological Pain.
    Asiedu MN; Dussor G; Price TJ
    Exp Suppl; 2016; 107():257-285. PubMed ID: 27812984
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metformin and Fibrosis: A Review of Existing Evidence and Mechanisms.
    Wu M; Xu H; Liu J; Tan X; Wan S; Guo M; Long Y; Xu Y
    J Diabetes Res; 2021; 2021():6673525. PubMed ID: 34007848
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuropharmacological Actions of Metformin in Stroke.
    Jia J; Cheng J; Ni J; Zhen X
    Curr Neuropharmacol; 2015; 13(3):389-94. PubMed ID: 26411966
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system.
    Demaré S; Kothari A; Calcutt NA; Fernyhough P
    Expert Rev Neurother; 2021 Jan; 21(1):45-63. PubMed ID: 33161784
    [No Abstract]   [Full Text] [Related]  

  • 53. Diabetic cardiovascular disease--AMP-activated protein kinase (AMPK) as a therapeutic target.
    Ewart MA; Kennedy S
    Cardiovasc Hematol Agents Med Chem; 2012 Sep; 10(3):190-211. PubMed ID: 22632264
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of active matrix metalloproteinase-9 as a likely contributor to the clinical failure of aclerastide in treatment of diabetic foot ulcers.
    Nguyen TT; Ding D; Wolter WR; Champion MM; Hesek D; Lee M; Pérez RL; Schroeder VA; Suckow MA; Mobashery S; Chang M
    Eur J Pharmacol; 2018 Sep; 834():77-83. PubMed ID: 30012502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metformin ameliorates animal models of dermatitis.
    Choi SY; Lee C; Heo MJ; Choi YM; An IS; Bae S; An S; Jung JH
    Inflammopharmacology; 2020 Oct; 28(5):1293-1300. PubMed ID: 32347398
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AMPK role in epilepsy: a promising therapeutic target?
    Qi Y; Zhang YM; Gao YN; Chen WG; Zhou T; Chang L; Zang Y; Li J
    J Neurol; 2024 Feb; 271(2):748-771. PubMed ID: 38010498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design, synthesis and biological evaluation of 4,7,12,12a-tetrahydro-5H-thieno[3',2':3,4]pyrido[1,2-b]isoquinolines as novel adenosine 5'-monophosphate-activated protein kinase (AMPK) indirect activators for the treatment of type 2 diabetes.
    Zhou S; Duan Y; Wang J; Zhang J; Sun H; Jiang H; Gu Z; Tong J; Li J; Li J; Liu H
    Eur J Med Chem; 2017 Nov; 140():448-464. PubMed ID: 28987606
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic roles of AMPK and metformin in cancer cells.
    Choi YK; Park KG
    Mol Cells; 2013 Oct; 36(4):279-87. PubMed ID: 23794020
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Research Progress on the Use of Metformin in Leukemia Treatment.
    Wang Q; Wei X
    Curr Treat Options Oncol; 2024 Feb; 25(2):220-236. PubMed ID: 38286894
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AMPK: Therapeutic Target for Diabetes and Cancer Prevention.
    Umezawa S; Higurashi T; Nakajima A
    Curr Pharm Des; 2017; 23(25):3629-3644. PubMed ID: 28714409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.