These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24857824)

  • 21. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.
    Furuya T; Kino K
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1145-54. PubMed ID: 23666444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes.
    Rossner R; Kaeberlein M; Leiser SF
    J Biol Chem; 2017 Jul; 292(27):11138-11146. PubMed ID: 28515321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tandem enzymatic oxygenations in biosynthesis of epoxyquinone pharmacophore of manumycin-type metabolites.
    Rui Z; Sandy M; Jung B; Zhang W
    Chem Biol; 2013 Jul; 20(7):879-87. PubMed ID: 23890006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer.
    Visitsatthawong S; Chenprakhon P; Chaiyen P; Surawatanawong P
    J Am Chem Soc; 2015 Jul; 137(29):9363-74. PubMed ID: 26144862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unique Biochemical and Sequence Features Enable BluB To Destroy Flavin and Distinguish BluB from the Flavin Monooxygenase Superfamily.
    Hazra AB; Ballou DP; Taga ME
    Biochemistry; 2018 Mar; 57(11):1748-1757. PubMed ID: 29457884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flavin reductase coupling with two monooxygenases involved in dibenzothiophene desulfurization: purification and characterization from a non-desulfurizing bacterium, Paenibacillus polymyxa A-1.
    Ohshiro T; Aoi Y; Torii K; Izumi Y
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):649-57. PubMed ID: 12226720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2-Aminobenzoyl-CoA monooxygenase/reductase. Evidence for two distinct loci catalyzing substrate monooxygenation and hydrogenation.
    Langkau B; Vock P; Massey V; Fuchs G; Ghisla S
    Eur J Biochem; 1995 Jun; 230(2):676-85. PubMed ID: 7607242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of N-hydroxylation catalyzed by flavin-dependent monooxygenases.
    Badieyan S; Bach RD; Sobrado P
    J Org Chem; 2015 Feb; 80(4):2139-47. PubMed ID: 25633869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overview of flavin-dependent enzymes.
    Pimviriyakul P; Chaiyen P
    Enzymes; 2020; 47():1-36. PubMed ID: 32951820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181, His184.
    Khan H; Barna T; Bruce NC; Munro AW; Leys D; Scrutton NS
    FEBS J; 2005 Sep; 272(18):4660-71. PubMed ID: 16156787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations.
    Machovina MM; Usselman RJ; DuBois JL
    J Biol Chem; 2016 Aug; 291(34):17816-28. PubMed ID: 27307041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    Biochemistry; 2005 Aug; 44(30):10434-42. PubMed ID: 16042421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
    Yeh E; Cole LJ; Barr EW; Bollinger JM; Ballou DP; Walsh CT
    Biochemistry; 2006 Jun; 45(25):7904-12. PubMed ID: 16784243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity coupling of Vibrio harveyi luciferase and flavin reductase (FRP): oxygen as a probe.
    Li X; Tu SC
    Arch Biochem Biophys; 2006 Oct; 454(1):26-31. PubMed ID: 16949542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.