BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24857836)

  • 1. Non-invasive measure of respiratory mechanics and conventional respiratory parameters in conscious large animals by high frequency Airwave Oscillometry.
    Bassett L; Troncy E; Robichaud A; Schuessler TF; Pouliot M; Ascah A; Authier S
    J Pharmacol Toxicol Methods; 2014; 70(1):62-5. PubMed ID: 24857836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprint of "Non-invasive measure of respiratory mechanics and conventional respiratory parameters in conscious large animals by high frequency Airwave Oscillometry".
    Bassett L; Troncy E; Robichaud A; Schuessler TF; Pouliot M; Ascah A; Authier S
    J Pharmacol Toxicol Methods; 2014; 70(3):283-6. PubMed ID: 25467812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiratory mechanics: comparison of Beagle dogs, Göttingen minipigs and Cynomolgus monkeys.
    Truchetti G; Troncy E; Robichaud A; Gold L; Schuessler T; Maghezzi S; Bassett L; Authier S
    J Pharmacol Toxicol Methods; 2014; 70(1):48-54. PubMed ID: 24704341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-breath frequency in bronchoconstricted monkeys (Macaca fascicularis).
    Dybas JM; Andresen CJ; Schelegle ES; McCue RW; Callender NN; Jackson AC
    J Appl Physiol (1985); 2006 Mar; 100(3):786-91. PubMed ID: 16467390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory safety pharmacology: positive control drug responses in Sprague-Dawley rats, Beagle dogs and cynomolgus monkeys.
    Authier S; Legaspi M; Gauvin D; Troncy E
    Regul Toxicol Pharmacol; 2009 Nov; 55(2):229-35. PubMed ID: 19647027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of respiratory safety pharmacology models: conscious and anesthetized beagle dogs.
    Authier S; Legaspi M; Gauvin D; Chaurand F; Fournier S; Troncy E
    J Pharmacol Toxicol Methods; 2008; 57(1):52-60. PubMed ID: 17920938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of tidal volume and methacholine on low-frequency total respiratory impedance in dogs.
    Lutchen KR; Jackson AC
    J Appl Physiol (1985); 1990 May; 68(5):2128-38. PubMed ID: 2193908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency dependence of capnography in anesthetized rabbits.
    Ioan I; Demoulin B; Duvivier C; Leblanc AL; Bonabel C; Marchal F; Schweitzer C; Varechova S
    Respir Physiol Neurobiol; 2014 Jan; 190():14-9. PubMed ID: 24035836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tidal volume and frequency on airway responsiveness in mechanically ventilated rabbits.
    Shen X; Gunst SJ; Tepper RS
    J Appl Physiol (1985); 1997 Oct; 83(4):1202-8. PubMed ID: 9338429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tidal breathing pattern differentially antagonizes bronchoconstriction in C57BL/6J vs. A/J mice.
    Chen B; Liu G; Shardonofsky F; Dowell M; Lakser O; Mitchell RW; Fredberg JJ; Pinto LH; Solway J
    J Appl Physiol (1985); 2006 Jul; 101(1):249-55. PubMed ID: 16484363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway constriction measured from tantalum bronchograms in conscious mice in response to methacholine.
    Lai-Fook SJ; Houtz PK
    J Appl Physiol (1985); 2008 Sep; 105(3):933-41. PubMed ID: 18583383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tidal volume amplitude affects the degree of induced bronchoconstriction in dogs.
    Salerno FG; Shinozuka N; Fredberg JJ; Ludwig MS
    J Appl Physiol (1985); 1999 Nov; 87(5):1674-7. PubMed ID: 10562608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical response to methacholine and deep inspiration in supine men.
    Meinero M; Coletta G; Dutto L; Milanese M; Nova G; Sciolla A; Pellegrino R; Brusasco V
    J Appl Physiol (1985); 2007 Jan; 102(1):269-75. PubMed ID: 16959912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of methacholine on peripheral lung mechanics and ventilation heterogeneity in asthma.
    Downie SR; Salome CM; Verbanck S; Thompson BR; Berend N; King GG
    J Appl Physiol (1985); 2013 Mar; 114(6):770-7. PubMed ID: 23372144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methacholine-induced volume dependence of respiratory resistance in preschool children.
    Marchal F; Loos N; Monin P; Peslin R
    Eur Respir J; 1999 Nov; 14(5):1167-74. PubMed ID: 10596708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neonatal total liquid ventilation: is low-frequency forced oscillation technique suitable for respiratory mechanics assessment?
    Bossé D; Beaulieu A; Avoine O; Micheau P; Praud JP; Walti H
    J Appl Physiol (1985); 2010 Aug; 109(2):501-10. PubMed ID: 20538848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for chronic measurement of respiratory function in the conscious monkey.
    Murphy DJ; Renninger JP; Coatney RW
    J Pharmacol Toxicol Methods; 2001; 46(1):13-20. PubMed ID: 12164255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory inductive plethysmography as a method for measuring ventilatory parameters in conscious, non-restrained dogs.
    Murphy DJ; Renninger JP; Schramek D
    J Pharmacol Toxicol Methods; 2010; 62(1):47-53. PubMed ID: 20435149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methacholine and ovalbumin challenges assessed by forced oscillations and synchrotron lung imaging.
    Bayat S; Strengell S; Porra L; Janosi TZ; Petak F; Suhonen H; Suortti P; Hantos Z; Sovijärvi AR; Habre W
    Am J Respir Crit Care Med; 2009 Aug; 180(4):296-303. PubMed ID: 19483115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lung mechanics during induced bronchoconstriction.
    Pellegrino R; Wilson O; Jenouri G; Rodarte JR
    J Appl Physiol (1985); 1996 Aug; 81(2):964-75. PubMed ID: 8872669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.