BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24858537)

  • 1. A simple method to engineer a protein-derived redox cofactor for catalysis.
    Shin S; Choi M; Williamson HR; Davidson VL
    Biochim Biophys Acta; 2014 Oct; 1837(10):1595-601. PubMed ID: 24858537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone.
    Davidson VL; Wilmot CM
    Annu Rev Biochem; 2013; 82():531-50. PubMed ID: 23746262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Tarboush NA; Jensen LM; Yukl ET; Geng J; Liu A; Wilmot CM; Davidson VL
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16956-61. PubMed ID: 21969534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for redox cooperativity between c-type hemes of MauG which is likely coupled to oxygen activation during tryptophan tryptophylquinone biosynthesis.
    Li X; Feng M; Wang Y; Tachikawa H; Davidson VL
    Biochemistry; 2006 Jan; 45(3):821-8. PubMed ID: 16411758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme iron nitrosyl complex of MauG reveals an efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands.
    Fu R; Liu F; Davidson VL; Liu A
    Biochemistry; 2009 Dec; 48(49):11603-5. PubMed ID: 19911786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional importance of tyrosine 294 and the catalytic selectivity for the bis-Fe(IV) state of MauG revealed by replacement of this axial heme ligand with histidine .
    Abu Tarboush N; Jensen LM; Feng M; Tachikawa H; Wilmot CM; Davidson VL
    Biochemistry; 2010 Nov; 49(45):9783-91. PubMed ID: 20929212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase.
    Shin S; Abu Tarboush N; Davidson VL
    Biochemistry; 2010 Jul; 49(27):5810-6. PubMed ID: 20540536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions.
    Davidson VL
    Biochemistry; 2018 Jun; 57(22):3115-3125. PubMed ID: 29498828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification.
    Davidson VL; Liu A
    Biochim Biophys Acta; 2012 Nov; 1824(11):1299-305. PubMed ID: 22314272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of Gln103 reveals the influence of this residue on the redox properties and stability of MauG.
    Shin S; Yukl ET; Sehanobish E; Wilmot CM; Davidson VL
    Biochemistry; 2014 Mar; 53(8):1342-9. PubMed ID: 24517455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation.
    Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM
    Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.
    Abu Tarboush N; Yukl ET; Shin S; Feng M; Wilmot CM; Davidson VL
    Biochemistry; 2013 Sep; 52(37):6358-67. PubMed ID: 23952537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis.
    Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG.
    Feng M; Jensen LM; Yukl ET; Wei X; Liu A; Wilmot CM; Davidson VL
    Biochemistry; 2012 Feb; 51(8):1598-606. PubMed ID: 22299652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of Trp(93) of MauG to tyrosine causes loss of bound Ca(2+) and alters the kinetic mechanism of tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Davidson VL
    Biochem J; 2013 Nov; 456(1):129-37. PubMed ID: 24024544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism for the initial steps in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Lee S; Shin S; Li X; Davidson VL
    Biochemistry; 2009 Mar; 48(11):2442-7. PubMed ID: 19196017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis.
    Yukl ET; Liu F; Krzystek J; Shin S; Jensen LM; Davidson VL; Wilmot CM; Liu A
    Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4569-73. PubMed ID: 23487750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Chen Y; Jensen LM; Tachikawa H; Wilmot CM; Liu A; Davidson VL
    Biochemistry; 2011 Jan; 50(1):144-50. PubMed ID: 21128656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone.
    Li X; Fu R; Liu A; Davidson VL
    Biochemistry; 2008 Mar; 47(9):2908-12. PubMed ID: 18220357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the free energy dependence of an interprotein electron transfer reaction by variation of pH and site-directed mutagenesis.
    Dow BA; Davidson VL
    Biochim Biophys Acta; 2015 Oct; 1847(10):1181-6. PubMed ID: 26087387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.