BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 24858794)

  • 1. Impaired visually guided weight-shifting ability in children with cerebral palsy.
    Ballaz L; Robert M; Parent A; Prince F; Lemay M
    Res Dev Disabil; 2014 Sep; 35(9):1970-7. PubMed ID: 24858794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postural adjustment of children with spastic diplegic cerebral palsy during seated hand reaching in different directions.
    Ju YH; Hwang IS; Cherng RJ
    Arch Phys Med Rehabil; 2012 Mar; 93(3):471-9. PubMed ID: 22265343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability and comparison of electromyographic and kinetic measurements during a standing reach task in children with and without cerebral palsy.
    Zaino CA; McCoy SW
    Gait Posture; 2008 Jan; 27(1):128-37. PubMed ID: 17459707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise intensity levels in children with cerebral palsy while playing with an active video game console.
    Robert M; Ballaz L; Hart R; Lemay M
    Phys Ther; 2013 Aug; 93(8):1084-91. PubMed ID: 23580626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of isometric lower-extremity muscle strength measurements in children with cerebral palsy: implications for measurement design.
    Willemse L; Brehm MA; Scholtes VA; Jansen L; Woudenberg-Vos H; Dallmeijer AJ
    Phys Ther; 2013 Jul; 93(7):935-41. PubMed ID: 23538586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower extremity kinetics for balance control in children with cerebral palsy.
    Chen J; Woollacott MH
    J Mot Behav; 2007 Jul; 39(4):306-16. PubMed ID: 17664172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The capacity to adapt to changing balance threats: a comparison of children with cerebral palsy and typically developing children.
    Burtner PA; Woollacott MH; Craft GL; Roncesvalles MN
    Dev Neurorehabil; 2007; 10(3):249-60. PubMed ID: 17564865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Nintendo Wii-Fit
    Tarakci D; Ersoz Huseyinsinoglu B; Tarakci E; Razak Ozdincler A
    Pediatr Int; 2016 Oct; 58(10):1042-1050. PubMed ID: 26858013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of Wii Fit intervention on dynamic balance control in children with probable Developmental Coordination Disorder and balance problems.
    Jelsma D; Geuze RH; Mombarg R; Smits-Engelsman BC
    Hum Mov Sci; 2014 Feb; 33():404-18. PubMed ID: 24444657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor control of the lower extremity musculature in children with cerebral palsy.
    Arpin DJ; Stuberg W; Stergiou N; Kurz MJ
    Res Dev Disabil; 2013 Apr; 34(4):1134-43. PubMed ID: 23376048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knee muscle strength at varying angular velocities and associations with gross motor function in ambulatory children with cerebral palsy.
    Hong WH; Chen HC; Shen IH; Chen CY; Chen CL; Chung CY
    Res Dev Disabil; 2012; 33(6):2308-16. PubMed ID: 22853889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle fatigue during repetitive voluntary contractions: a comparison between children with cerebral palsy, typically developing children and young healthy adults.
    Eken MM; Dallmeijer AJ; Houdijk H; Doorenbosch CA
    Gait Posture; 2013 Sep; 38(4):962-7. PubMed ID: 23810336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical structure of center-of-pressure trajectories with and without functional taping in children with cerebral palsy level I and II of GMFCS.
    Pavão SL; Ledebt A; Savelsbergh GJP; Rocha NACF
    Hum Mov Sci; 2017 Aug; 54():137-143. PubMed ID: 28486165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired postural control of axial segments in children with cerebral palsy.
    Pierret J; Caudron S; Paysant J; Beyaert C
    Gait Posture; 2021 May; 86():266-272. PubMed ID: 33819768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic muscle activation during maximum voluntary contractions in children with and without spastic cerebral palsy.
    Tedroff K; Knutson LM; Soderberg GL
    Dev Med Child Neurol; 2006 Oct; 48(10):789-96. PubMed ID: 16978457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of task constraint on reaching performance in children with spastic diplegic cerebral palsy.
    Ju YH; You JY; Cherng RJ
    Res Dev Disabil; 2010; 31(5):1076-82. PubMed ID: 20434308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postural control during sit-to-stand movement and its relationship with upright position in children with hemiplegic spastic cerebral palsy and in typically developing children.
    Pavão SL; Santos AN; Oliveira AB; Rocha NA
    Braz J Phys Ther; 2015; 19(1):18-25. PubMed ID: 25651131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle strength and walking ability in diplegic cerebral palsy: implications for assessment and management.
    Thompson N; Stebbins J; Seniorou M; Newham D
    Gait Posture; 2011 Mar; 33(3):321-5. PubMed ID: 21169021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postural orientation during standing in children with bilateral cerebral palsy.
    Lidbeck CM; Gutierrez-Farewik EM; Broström E; Bartonek Å
    Pediatr Phys Ther; 2014; 26(2):223-9. PubMed ID: 24675124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of postural stability in children with cerebral palsy and children with typical development: an observational study.
    Saxena S; Rao BK; Kumaran S
    Pediatr Phys Ther; 2014; 26(3):325-30. PubMed ID: 24979087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.