BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 24859209)

  • 1. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.
    Tang X; Li H; Du Z; Ng HY
    Bioresour Technol; 2014 Jul; 164():184-8. PubMed ID: 24859209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthraquinone-2-sulfonate immobilized to conductive polypyrrole hydrogel as a bioanode to enhance power production in microbial fuel cell.
    Tang X; Ng HY
    Bioresour Technol; 2017 Nov; 244(Pt 1):452-455. PubMed ID: 28800554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells.
    Feng C; Ma L; Li F; Mai H; Lang X; Fan S
    Biosens Bioelectron; 2010 Feb; 25(6):1516-20. PubMed ID: 19889528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition of Fe on graphite felt by thermal decomposition of Fe(CO)5 for effective cathodic preparation of microbial fuel cells.
    Wang P; Lai B; Li H; Du Z
    Bioresour Technol; 2013 Apr; 134():30-5. PubMed ID: 23500556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal.
    Guo W; Cui Y; Song H; Sun J
    Bioprocess Biosyst Eng; 2014 Sep; 37(9):1749-58. PubMed ID: 24535080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode.
    Zhang Y; Li J; Bai J; Li L; Xia L; Chen S; Zhou B
    Water Res; 2017 Nov; 125():259-269. PubMed ID: 28865375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell.
    Kang CS; Eaktasang N; Kwon DY; Kim HS
    Bioresour Technol; 2014 Aug; 165():27-30. PubMed ID: 24751374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems.
    Guo K; Chen X; Freguia S; Donose BC
    Biosens Bioelectron; 2013 Sep; 47():184-9. PubMed ID: 23578972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials.
    Zhu X; Tokash JC; Hong Y; Logan BE
    Bioelectrochemistry; 2013 Apr; 90():30-5. PubMed ID: 23178374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved power generation using nitrogen-doped 3D graphite foam anodes in microbial fuel cells.
    Guo W; Chao S; Chen Q
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):143-151. PubMed ID: 31535224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode.
    He YR; Xiao X; Li WW; Sheng GP; Yan FF; Yu HQ; Yuan H; Wu LJ
    Phys Chem Chem Phys; 2012 Jul; 14(28):9966-71. PubMed ID: 22699925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes.
    Tang X; Guo K; Li H; Du Z; Tian J
    Bioresour Technol; 2011 Feb; 102(3):3558-60. PubMed ID: 20888221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.
    Zhang C; Liang P; Yang X; Jiang Y; Bian Y; Chen C; Zhang X; Huang X
    Biosens Bioelectron; 2016 Jul; 81():32-38. PubMed ID: 26918615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.
    Tang J; Chen S; Yuan Y; Cai X; Zhou S
    Biosens Bioelectron; 2015 Sep; 71():387-395. PubMed ID: 25950933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ synthesis of polypyrrole on graphite felt as bio-anode to enhance the start-up performance of microbial fuel cells.
    Pu KB; Lu CX; Zhang K; Zhang H; Chen QY; Wang YH
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):429-437. PubMed ID: 31679050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and performance evaluation of mediator-less microbial fuel cell using carbon nanotubes as an anode material.
    Roh SH; Kim SI
    J Nanosci Nanotechnol; 2012 May; 12(5):4252-5. PubMed ID: 22852384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analysis and Characterization of Multi-modified Anodes via Nitric Acid and PPy/AQDS in Microbial Fuel Cells].
    Shen WH; Zhu NW; Yin FH; Wu PX; Zhang YH
    Huan Jing Ke Xue; 2016 Sep; 37(9):3488-3497. PubMed ID: 29964785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.