BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 24859219)

  • 21. Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions.
    Chatelain G; Bourgeois D; Ravaux J; Averseng O; Vidaud C; Meyer D
    Biomed Mater; 2014 Feb; 9(1):015003. PubMed ID: 24343417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The morphology and lattice structure of bone crystal after strontium treatment in goats.
    Li Z; Lu WW; Deng L; Chiu PK; Fang D; Lam RW; Leong JC; Luk KD
    J Bone Miner Metab; 2010; 28(1):25-34. PubMed ID: 19603246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mineralization of bone tissue: a forgotten dimension in osteoporosis research.
    Boivin G; Meunier PJ
    Osteoporos Int; 2003; 14 Suppl 3():S19-24. PubMed ID: 12730799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: Matrix incorporation of strontium is accompanied by changes in mineralization and microstructure.
    Busse B; Jobke B; Hahn M; Priemel M; Niecke M; Seitz S; Zustin J; Semler J; Amling M
    Acta Biomater; 2010 Dec; 6(12):4513-21. PubMed ID: 20654744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of borate, fluoride and strontium ions on biomimetic nucleation of calcium phosphate studied using solid-state nuclear magnetic resonance and X-ray diffraction.
    Hiraishi N; Gondo T; Shimada Y; Hayashi F
    Dent Mater; 2024 Feb; 40(2):210-218. PubMed ID: 37977993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of strontium on the quality of bone apatite crystals: a paired biopsy study in postmenopausal osteoporotic women.
    Doublier A; Farlay D; Jaurand X; Vera R; Boivin G
    Osteoporos Int; 2013 Mar; 24(3):1079-87. PubMed ID: 23108780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Minor elements in bone mineral and their effects on its solubility.
    Baud CA; Bang S; Very JM
    J Biol Buccale; 1977 Sep; 5(3):195-202. PubMed ID: 122694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gradient structural bone-like apatite induced by chitosan hydrogel via ion assembly.
    Li B; Wang Y; Jia D; Zhou Y
    J Biomater Sci Polym Ed; 2011; 22(4-6):505-17. PubMed ID: 20566043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural analysis of a series of strontium-substituted apatites.
    O'Donnell MD; Fredholm Y; de Rouffignac A; Hill RG
    Acta Biomater; 2008 Sep; 4(5):1455-64. PubMed ID: 18502710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering.
    Al Qaysi M; Walters NJ; Foroutan F; Owens GJ; Kim HW; Shah R; Knowles JC
    J Biomater Appl; 2015 Sep; 30(3):300-10. PubMed ID: 26023179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Improvement of osseointegration of titanium dental implant surfaces modified with strontium-substituted hydroxyapatite].
    Yan J; Zhang YM; Han Y; Zhao YT; Sun JF; Yan H
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2010 Feb; 45(2):89-93. PubMed ID: 20368002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy.
    Mkukuma LD; Skakle JM; Gibson IR; Imrie CT; Aspden RM; Hukins DW
    Calcif Tissue Int; 2004 Oct; 75(4):321-8. PubMed ID: 15549647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces.
    Park JW; Kim YJ; Jang JH
    Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled release of strontium ions from a bioactive Ti metal with a Ca-enriched surface layer.
    Yamaguchi S; Nath S; Matsushita T; Kokubo T
    Acta Biomater; 2014 May; 10(5):2282-9. PubMed ID: 24486909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbonate ions in apatites: infrared investigations in the upsilon 4 CO3 domain.
    el Feki H; Rey C; Vignoles M
    Calcif Tissue Int; 1991 Oct; 49(4):269-74. PubMed ID: 1760771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein-free formation of bone-like apatite: New insights into the key role of carbonation.
    Deymier AC; Nair AK; Depalle B; Qin Z; Arcot K; Drouet C; Yoder CH; Buehler MJ; Thomopoulos S; Genin GM; Pasteris JD
    Biomaterials; 2017 May; 127():75-88. PubMed ID: 28279923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strontium ranelate improves the interaction of osteoblastic cells with titanium substrates: Increase in cell proliferation, differentiation and matrix mineralization.
    Querido W; Farina M; Anselme K
    Biomatter; 2015; 5(1):e1027847. PubMed ID: 26176488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials.
    Pasteris JD; Wopenka B; Freeman JJ; Rogers K; Valsami-Jones E; van der Houwen JA; Silva MJ
    Biomaterials; 2004 Jan; 25(2):229-38. PubMed ID: 14585710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strontium Ranelate Effect on the Repair of Bone Defects and Molecular Components of the Cortical Bone of Rats.
    Rosa JA; Sakane KK; Santos KC; Corrêa VB; Arana-Chavez VE; Oliveira JX
    Braz Dent J; 2016; 27(5):502-507. PubMed ID: 27982225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the apatite crystals of bone and their maturation in osteoblast cell culture: comparison with native bone crystals.
    Rey C; Kim HM; Gerstenfeld L; Glimcher MJ
    Connect Tissue Res; 1996; 35(1-4):343-9. PubMed ID: 9084674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.