These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 24859279)
1. A microrheological study of hydrogel kinetics and micro-heterogeneity. Aufderhorst-Roberts A; Frith WJ; Donald AM Eur Phys J E Soft Matter; 2014 May; 37(5):44. PubMed ID: 24859279 [TBL] [Abstract][Full Text] [Related]
2. Microrheology and microstructure of Fmoc-derivative hydrogels. Aufderhorst-Roberts A; Frith WJ; Kirkland M; Donald AM Langmuir; 2014 Apr; 30(15):4483-92. PubMed ID: 24684622 [TBL] [Abstract][Full Text] [Related]
3. Controlled release from modified amino acid hydrogels governed by molecular size or network dynamics. Sutton S; Campbell NL; Cooper AI; Kirkland M; Frith WJ; Adams DJ Langmuir; 2009 Sep; 25(17):10285-91. PubMed ID: 19499945 [TBL] [Abstract][Full Text] [Related]
4. Comparison of rheological, tribological, and microstructural properties of soymilk gels acidified with glucono-δ-lactone or culture. Pang Z; Xu R; Zhu Y; Li H; Bansal N; Liu X Food Res Int; 2019 Jul; 121():798-805. PubMed ID: 31108810 [TBL] [Abstract][Full Text] [Related]
5. Modulation of the clinically accessible gelation time using glucono-d-lactone and pyridoxal 5'-phosphate for long-acting alginate in situ forming gel injectable. Kim H; Song D; Ngo HV; Jin G; Park C; Park JB; Lee BJ Carbohydr Polym; 2021 Nov; 272():118453. PubMed ID: 34420713 [TBL] [Abstract][Full Text] [Related]
6. Preparation and physicochemical properties of an injectable alginate-based hydrogel by the regulated release of divalent ions via the hydrolysis of d-glucono- Sun X; Li Z; Cui Z; Wu S; Zhu S; Liang Y; Yang X J Biomater Appl; 2020 Feb; 34(7):891-901. PubMed ID: 31684793 [No Abstract] [Full Text] [Related]
7. Differences in the physicochemical, digestion and microstructural characteristics of soy protein gel acidified with lactic acid bacteria, glucono-δ-lactone and organic acid. Yang X; Ren Y; Liu H; Huo C; Li L Int J Biol Macromol; 2021 Aug; 185():462-470. PubMed ID: 34147525 [TBL] [Abstract][Full Text] [Related]
8. Acid induced gelation of soymilk, comparison between gels prepared with lactic acid bacteria and glucono-δ-lactone. Grygorczyk A; Corredig M Food Chem; 2013 Dec; 141(3):1716-21. PubMed ID: 23870883 [TBL] [Abstract][Full Text] [Related]
9. Preparation of thermally stable emulsion gels based on Glucono-δ-lactone induced gelation of gellan gum. Li A; Gong T; Li X; Li X; Yang X; Guo Y Int J Biol Macromol; 2020 Aug; 156():565-575. PubMed ID: 32311401 [TBL] [Abstract][Full Text] [Related]
10. An injectable alginate-based hydrogel for microfluidic applications. Akay S; Heils R; Trieu HK; Smirnova I; Yesil-Celiktas O Carbohydr Polym; 2017 Apr; 161():228-234. PubMed ID: 28189233 [TBL] [Abstract][Full Text] [Related]
11. Interpenetrating network gels with tunable physical properties: Glucono-δ-lactone induced gelation of mixed Alg/gellan sol systems. Li A; Gong T; Yang X; Guo Y Int J Biol Macromol; 2020 May; 151():257-267. PubMed ID: 32057870 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation. Chen L; Morris K; Laybourn A; Elias D; Hicks MR; Rodger A; Serpell L; Adams DJ Langmuir; 2010 Apr; 26(7):5232-42. PubMed ID: 19921840 [TBL] [Abstract][Full Text] [Related]
13. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications. Growney Kalaf EA; Flores R; Bledsoe JG; Sell SA Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():198-210. PubMed ID: 27040212 [TBL] [Abstract][Full Text] [Related]
14. Cooking, textural, and mechanical properties of rice flour-soy protein isolate noodles prepared using combined treatments of microbial transglutaminase and glucono-δ-lactone. Ojukwu M; Tan JS; Easa AM J Food Sci; 2020 Sep; 85(9):2720-2727. PubMed ID: 32776580 [TBL] [Abstract][Full Text] [Related]
15. Mesoscopic Characterization of the Early Stage of the Glucono- Sekiguchi K; Tanimoto M; Fujii S Gels; 2023 Mar; 9(3):. PubMed ID: 36975651 [TBL] [Abstract][Full Text] [Related]
16. Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels. Xie YY; Zhang YW; Qin XT; Liu LP; Wahid F; Zhong C; Jia SR Colloids Surf B Biointerfaces; 2020 Sep; 193():111099. PubMed ID: 32408261 [TBL] [Abstract][Full Text] [Related]
17. Rheological properties and permeability of soy protein-stabilised emulsion gels made by acidification with glucono-δ-lactone. Li F; Kong X; Zhang C; Hua Y J Sci Food Agric; 2011 Sep; 91(12):2186-91. PubMed ID: 21656774 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of sodium alginate and glucono-delta-lactone levels on the cold-set gelation of porcine myofibrillar proteins at different salt concentrations. Hong GP; Chin KB Meat Sci; 2010 Jun; 85(2):201-9. PubMed ID: 20374886 [TBL] [Abstract][Full Text] [Related]
19. Effects of sucrose and urea on soy hull pectic polysaccharide gel induced by D-glucono-1,5-lactone. Liu H; Li Q; Zhu D; Li J; Liu J; Geng P; He Y Carbohydr Polym; 2013 Oct; 98(1):542-5. PubMed ID: 23987379 [TBL] [Abstract][Full Text] [Related]
20. Concentration dependent effects of dextran on the physical properties of acid milk gels. Mende S; Peter M; Bartels K; Dong T; Rohm H; Jaros D Carbohydr Polym; 2013 Nov; 98(2):1389-96. PubMed ID: 24053819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]