BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24859698)

  • 1. Metal partitioning in plant-substrate-water compartments under EDDS-assisted phytoextraction of pyrite waste with Brassica carinata A. Braun.
    Vamerali T; Bandiera M; Lucchini P; Mosca G
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2434-46. PubMed ID: 24859698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of [S,S]-ethylenediaminedisuccinic acid and nitrilotriacetic acid on the efficiency of Pb phytostabilization by Athyrium wardii (Hook.) grown in Pb-contaminated soils.
    Zhao L; Li T; Yu H; Zhang X; Zheng Z
    J Environ Manage; 2016 Nov; 182():94-100. PubMed ID: 27454100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field.
    Attinti R; Barrett KR; Datta R; Sarkar D
    Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS).
    Fässler E; Evangelou MW; Robinson BH; Schulin R
    Chemosphere; 2010 Aug; 80(8):901-7. PubMed ID: 20537682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and translocation of CuEDDS complexes by Brassica carinata.
    Cestone B; Quartacci MF; Navari-Izzo F
    Environ Sci Technol; 2010 Aug; 44(16):6403-8. PubMed ID: 20704241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction.
    Grcman H; Vodnik D; Velikonja-Bolta S; Lestan D
    J Environ Qual; 2003; 32(2):500-6. PubMed ID: 12708673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration.
    Tandy S; Schulin R; Nowack B
    Environ Sci Technol; 2006 Apr; 40(8):2753-8. PubMed ID: 16683619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS.
    Hauser L; Tandy S; Schulin R; Nowack B
    Environ Sci Technol; 2005 Sep; 39(17):6819-24. PubMed ID: 16190244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of amendments on copper, cadmium, and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution.
    Gunawardana B; Singhal N; Johnson A
    Int J Phytoremediation; 2011 Mar; 13(3):215-32. PubMed ID: 21598788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste-contaminated soil.
    Luo C; Wang S; Wang Y; Yang R; Zhang G; Shen Z
    J Hazard Mater; 2015 Apr; 286():379-85. PubMed ID: 25658198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria.
    Ju W; Duan C; Liu L; Jin X; Bravo-Ruiseco G; Mei Y; Fang L
    Chemosphere; 2022 Jan; 287(Pt 3):132288. PubMed ID: 34555581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction.
    Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C
    Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal leaching along soil profiles after the EDDS application--a field study.
    Wang A; Luo C; Yang R; Chen Y; Shen Z; Li X
    Environ Pollut; 2012 May; 164():204-10. PubMed ID: 22366349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica.
    Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K
    Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.
    Tandy S; Schulin R; Nowack B
    Chemosphere; 2006 Mar; 62(9):1454-63. PubMed ID: 16083944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils.
    Komárek M; Vanek A; Mrnka L; Sudová R; Száková J; Tejnecký V; Chrastný V
    Environ Pollut; 2010 Jul; 158(7):2428-38. PubMed ID: 20452106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.
    Beiyuan J; Tsang DCW; Ok YS; Zhang W; Yang X; Baek K; Li XD
    Chemosphere; 2016 Sep; 159():426-432. PubMed ID: 27337434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.