These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24860014)

  • 1. A neutral pH thermal hydrolysis method for quantification of structured RNAs.
    Wilson SC; Cohen DT; Wang XC; Hammond MC
    RNA; 2014 Jul; 20(7):1153-60. PubMed ID: 24860014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Quantification of Nucleic Acids Using Hypochromicity Measurements in Conjunction with UV Spectrophotometry.
    Nwokeoji AO; Kilby PM; Portwood DE; Dickman MJ
    Anal Chem; 2017 Dec; 89(24):13567-13574. PubMed ID: 29141408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid NMR screening of RNA secondary structure and binding.
    Helmling C; Keyhani S; Sochor F; Fürtig B; Hengesbach M; Schwalbe H
    J Biomol NMR; 2015 Sep; 63(1):67-76. PubMed ID: 26188386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and applications of RNAs with position-selective labelling and mosaic composition.
    Liu Y; Holmstrom E; Zhang J; Yu P; Wang J; Dyba MA; Chen D; Ying J; Lockett S; Nesbitt DJ; Ferré-D'Amaré AR; Sousa R; Stagno JR; Wang YX
    Nature; 2015 Jun; 522(7556):368-72. PubMed ID: 25938715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells.
    Broft P; Dzatko S; Krafcikova M; Wacker A; Hänsel-Hertsch R; Dötsch V; Trantirek L; Schwalbe H
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):865-872. PubMed ID: 32975353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of RNA-based c-di-GMP fluorescent sensors through tuning their structural modules.
    Inuzuka S; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2016 Aug; 122(2):183-7. PubMed ID: 26968125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorogenic aptamers resolve the flexibility of RNA junctions using orientation-dependent FRET.
    Jeng SCY; Trachman RJ; Weissenboeck F; Truong L; Link KA; Jepsen MDE; Knutson JR; Andersen ES; Ferré-D'Amaré AR; Unrau PJ
    RNA; 2021 Apr; 27(4):433-444. PubMed ID: 33376189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of cooperative ligand binding by the glycine riboswitch.
    Butler EB; Xiong Y; Wang J; Strobel SA
    Chem Biol; 2011 Mar; 18(3):293-8. PubMed ID: 21439473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer.
    Anthony PC; Perez CF; García-García C; Block SM
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1485-9. PubMed ID: 22219369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using sm-FRET and denaturants to reveal folding landscapes.
    Shaw E; St-Pierre P; McCluskey K; Lafontaine DA; Penedo JC
    Methods Enzymol; 2014; 549():313-41. PubMed ID: 25432755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A natural riboswitch scaffold with self-methylation activity.
    Flemmich L; Heel S; Moreno S; Breuker K; Micura R
    Nat Commun; 2021 Jun; 12(1):3877. PubMed ID: 34162884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for thermal denaturation studies of nucleic acids in complex with fluorogenic dyes.
    Aufdembrink LM; Hoog TG; Pawlak MR; Bachan BF; Heili JM; Engelhart AE
    Methods Enzymol; 2019; 623():23-43. PubMed ID: 31239049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.
    Trausch JJ; Ceres P; Reyes FE; Batey RT
    Structure; 2011 Oct; 19(10):1413-23. PubMed ID: 21906956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs.
    Wakeman CA; Ramesh A; Winkler WC
    J Mol Biol; 2009 Sep; 392(3):723-35. PubMed ID: 19619558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refolding through a Linear Transition State Enables Fast Temperature Adaptation of a Translational Riboswitch.
    Fürtig B; Oberhauser EM; Zetzsche H; Klötzner DP; Heckel A; Schwalbe H
    Biochemistry; 2020 Mar; 59(10):1081-1086. PubMed ID: 32134253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer.
    Bao L; Wang J; Xiao Y
    Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fluorescent aptamer Squash extensively repurposes the adenine riboswitch fold.
    Truong L; Kooshapur H; Dey SK; Li X; Tjandra N; Jaffrey SR; Ferré-D'Amaré AR
    Nat Chem Biol; 2022 Feb; 18(2):191-198. PubMed ID: 34937911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.