These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24860023)

  • 1. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke.
    Westerveld AJ; Aalderink BJ; Hagedoorn W; Buijze M; Schouten AC; Kooij Hv
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2646-54. PubMed ID: 24860023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic arm skate for stroke rehabilitation.
    Wong CK; Jordan K; King M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975389. PubMed ID: 22275593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Resonating Arm Exerciser: design and pilot testing of a mechanically passive rehabilitation device that mimics robotic active assistance.
    Zondervan DK; Palafox L; Hernandez J; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2013 Apr; 10():39. PubMed ID: 23597303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proof of concept study investigating the feasibility of combining iPAM robot assisted rehabilitation with functional electrical stimulation to deliver whole arm exercise in stroke survivors.
    O'Connor RJ; Jackson A; Makower SG; Cozens A; Levesley M
    J Med Eng Technol; 2014; 39(7):411-8. PubMed ID: 26414146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation.
    Fong J; Crocher V; Tan Y; Oetomo D; Mareels I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis.
    Housman SJ; Scott KM; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients.
    Panarese A; Colombo R; Sterpi I; Pisano F; Micera S
    Neurorehabil Neural Repair; 2012 Sep; 26(7):822-33. PubMed ID: 22374174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prototype development of bilateral arm mirror-like-robotic rehabilitation device for acute stroke patients.
    Klinkwan P; Kongmaroeng C; Muengtaweepongsa S; Limtrakarn W
    Biomed Phys Eng Express; 2023 May; 9(4):. PubMed ID: 37116477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a fuzzy logic based intelligent system for autonomous guidance of post-stroke rehabilitation exercise.
    Huq R; Wang R; Lu E; Hebert D; Lacheray H; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650472. PubMed ID: 24187289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases.
    Nef T; Quinter G; Müller R; Riener R
    Neurodegener Dis; 2009; 6(5-6):240-51. PubMed ID: 19940461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-aided sensorimotor training in stroke rehabilitation.
    Volpe BT; Krebs HI; Hogan N
    Adv Neurol; 2003; 92():429-33. PubMed ID: 12760210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach.
    Park W; Jeong W; Kwon GH; Kim YH; Kim L
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650482. PubMed ID: 24187299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke.
    Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.