BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24860275)

  • 1. How Accurate Are Transition States from Simulations of Enzymatic Reactions?
    Doron D; Kohen A; Nam K; Major DT
    J Chem Theory Comput; 2014 May; 10(5):1863-1871. PubMed ID: 24860275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective Reaction Coordinate for Hybrid Quantum and Molecular Mechanics Simulations: A Case Study of the Hydride Transfer in Dihydrofolate Reductase.
    Doron D; Kohen A; Major DT
    J Chem Theory Comput; 2012 Jul; 8(7):2484-96. PubMed ID: 26588977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of ensemble averaging in enzyme kinetics.
    Masgrau L; Truhlar DG
    Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.
    Engel H; Doron D; Kohen A; Major DT
    J Chem Theory Comput; 2012 Apr; 8(4):1223-34. PubMed ID: 26596739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of remote mutants of dihydrofolate reductase reveal the nature of a network of residues coupled to hydride transfer.
    Roston D; Kohen A; Doron D; Major DT
    J Comput Chem; 2014 Jul; 35(19):1411-7. PubMed ID: 24798860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of the kinetic isotope effects in thymidylate synthase. A theoretical study.
    Kanaan N; Ferrer S; Martí S; Garcia-Viloca M; Kohen A; Moliner V
    J Am Chem Soc; 2011 May; 133(17):6692-702. PubMed ID: 21476498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global dynamics and transition state theories: Comparative study of reaction rate constants for gas-phase chemical reactions.
    Ju LP; Han KL; Zhang JZ
    J Comput Chem; 2009 Jan; 30(2):305-16. PubMed ID: 18615407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freezing a single distal motion in dihydrofolate reductase.
    Sergi A; Watney JB; Wong KF; Hammes-Schiffer S
    J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion.
    Mushrif SH; Varghese JJ; Krishnamurthy CB
    Phys Chem Chem Phys; 2015 Feb; 17(7):4961-9. PubMed ID: 25591500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclohexane isomerization. Unimolecular dynamics of the twist-boat intermediate.
    Kakhiani K; Lourderaj U; Hu W; Birney D; Hase WL
    J Phys Chem A; 2009 Apr; 113(16):4570-80. PubMed ID: 19290605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydride transfer in liver alcohol dehydrogenase: quantum dynamics, kinetic isotope effects, and role of enzyme motion.
    Billeter SR; Webb SP; Agarwal PK; Iordanov T; Hammes-Schiffer S
    J Am Chem Soc; 2001 Nov; 123(45):11262-72. PubMed ID: 11697969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean field ring polymer molecular dynamics for electronically nonadiabatic reaction rates.
    Duke JR; Ananth N
    Faraday Discuss; 2016 Dec; 195():253-268. PubMed ID: 27739549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2⇌ CH + H on Ni(111) as a case study.
    Sun G; Jiang H
    J Chem Phys; 2015 Dec; 143(23):234706. PubMed ID: 26696069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition state theory can be used in studies of enzyme catalysis: lessons from simulations of tunnelling and dynamical effects in lipoxygenase and other systems.
    Olsson MH; Mavri J; Warshel A
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1417-32. PubMed ID: 16873128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Quantum and Classical Simulations of the Dihydrofolate Reductase Catalyzed Hydride Transfer Reaction on an Accurate Semi-Empirical Potential Energy Surface.
    Doron D; Major DT; Kohen A; Thiel W; Wu X
    J Chem Theory Comput; 2011 Oct; 7(10):3420-37. PubMed ID: 26598171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-transition state dynamics and product energy partitioning following thermal excitation of the F⋯HCH
    Pratihar S; Ma X; Xie J; Scott R; Gao E; Ruscic B; Aquino AJA; Setser DW; Hase WL
    J Chem Phys; 2017 Oct; 147(14):144301. PubMed ID: 29031273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions.
    Pang J; Pu J; Gao J; Truhlar DG; Allemann RK
    J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.