These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24860275)

  • 21. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convergence of theory and experiment on the role of preorganization, quantum tunneling and enzyme motions into flavoenzyme-catalyzed hydride transfer.
    Delgado M; Görlich S; Longbotham JE; Scrutton NS; Hay S; Moliner V; Tuñón I
    ACS Catal; 2019 May; 7(5):3190-3198. PubMed ID: 31157122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Modeling the transition state of enzyme-catalyzed phosphoryl transfer reaction using QM/MM method].
    Re S; Sugita Y
    Yakugaku Zasshi; 2011; 131(8):1171-82. PubMed ID: 21804320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductase.
    Ruiz-Pernia JJ; Luk LY; García-Meseguer R; Martí S; Loveridge EJ; Tuñón I; Moliner V; Allemann RK
    J Am Chem Soc; 2013 Dec; 135(49):18689-96. PubMed ID: 24252106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman's path integral.
    Wong KY; Xu Y; Xu L
    Biochim Biophys Acta; 2015 Nov; 1854(11):1782-94. PubMed ID: 25936775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydride transfer catalysed by Escherichia coli and Bacillus subtilis dihydrofolate reductase: coupled motions and distal mutations.
    Hammes-Schiffer S; Watney JB
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1365-73. PubMed ID: 16873124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preorganization and protein dynamics in enzyme catalysis.
    Rajagopalan PT; Benkovic SJ
    Chem Rec; 2002; 2(1):24-36. PubMed ID: 11933259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular modeling of the reaction pathway and hydride transfer reactions of HMG-CoA reductase.
    Haines BE; Steussy CN; Stauffacher CV; Wiest O
    Biochemistry; 2012 Oct; 51(40):7983-95. PubMed ID: 22971202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition-State Theory, Dynamics, and Narrow Time Scale Separation in the Rate-Promoting Vibrations Model of Enzyme Catalysis.
    Peters B
    J Chem Theory Comput; 2010 May; 6(5):1447-54. PubMed ID: 26615681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Derivation of a true (t → 0+) quantum transition-state theory. II. Recovery of the exact quantum rate in the absence of recrossing.
    Althorpe SC; Hele TJ
    J Chem Phys; 2013 Aug; 139(8):084115. PubMed ID: 24006982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QM/MM study of thymidylate synthase: enzymatic motions and the temperature dependence of the rate limiting step.
    Kanaan N; Martí S; Moliner V; Kohen A
    J Phys Chem A; 2009 Mar; 113(10):2176-82. PubMed ID: 19182971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.
    Gao J; Major DT; Fan Y; Lin YL; Ma S; Wong KY
    Methods Mol Biol; 2008; 443():37-62. PubMed ID: 18446281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of dynamics in enzyme catalysis: substantial versus semantic controversies.
    Kohen A
    Acc Chem Res; 2015 Feb; 48(2):466-73. PubMed ID: 25539442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the Met
    Mhashal AR; Vardi-Kilshtain A; Kohen A; Major DT
    J Biol Chem; 2017 Aug; 292(34):14229-14239. PubMed ID: 28620051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixed quantum-classical simulation of the hydride transfer reaction catalyzed by dihydrofolate reductase based on a mapped system-harmonic bath model.
    Xu Y; Song K; Shi Q
    J Chem Phys; 2018 Mar; 148(10):102322. PubMed ID: 29544288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution alters the enzymatic reaction coordinate of dihydrofolate reductase.
    Masterson JE; Schwartz SD
    J Phys Chem B; 2015 Jan; 119(3):989-96. PubMed ID: 25369552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.