These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24860434)

  • 21. Activity-Dependent Calcium Signaling in Neurons of the Medial Superior Olive during Late Postnatal Development.
    Franzen DL; Gleiss SA; Kellner CJ; Kladisios N; Felmy F
    J Neurosci; 2020 Feb; 40(8):1689-1700. PubMed ID: 31949105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Considerable differences between auditory medulla, auditory midbrain, and hippocampal synapses during sustained high-frequency stimulation: Exceptional vesicle replenishment restricted to sound localization circuit.
    Brill SE; Janz K; Singh A; Friauf E
    Hear Res; 2019 Sep; 381():107771. PubMed ID: 31394425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological properties of neurons in the mouse superior olive: membrane characteristics and postsynaptic responses studied in vitro.
    Wu SH; Kelly JB
    J Neurophysiol; 1991 Feb; 65(2):230-46. PubMed ID: 2016640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maturation of glycinergic inhibition in the gerbil medial superior olive after hearing onset.
    Magnusson AK; Kapfer C; Grothe B; Koch U
    J Physiol; 2005 Oct; 568(Pt 2):497-512. PubMed ID: 16096336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive.
    Sanes DH
    J Neurosci; 1990 Nov; 10(11):3494-506. PubMed ID: 2172478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat.
    Smith PH; Joris PX; Yin TC
    J Neurophysiol; 1998 Jun; 79(6):3127-42. PubMed ID: 9636113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directional hearing by linear summation of binaural inputs at the medial superior olive.
    van der Heijden M; Lorteije JA; Plauška A; Roberts MT; Golding NL; Borst JG
    Neuron; 2013 Jun; 78(5):936-48. PubMed ID: 23764292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat.
    Guinan JJ; Li RY
    Hear Res; 1990 Nov; 49(1-3):321-34. PubMed ID: 2292504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signatures of Somatic Inhibition and Dendritic Excitation in Auditory Brainstem Field Potentials.
    Goldwyn JH; McLaughlin M; Verschooten E; Joris PX; Rinzel J
    J Neurosci; 2017 Oct; 37(43):10451-10467. PubMed ID: 28947575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Weak action potential backpropagation is associated with high-frequency axonal firing capability in principal neurons of the gerbil medial superior olive.
    Scott LL; Hage TA; Golding NL
    J Physiol; 2007 Sep; 583(Pt 2):647-61. PubMed ID: 17627992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coincidence detection in the medial superior olive: mechanistic implications of an analysis of input spiking patterns.
    Franken TP; Bremen P; Joris PX
    Front Neural Circuits; 2014; 8():42. PubMed ID: 24822037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anatomy and projection patterns of the superior olivary complex in the Mexican free-tailed bat, Tadarida brasiliensis mexicana.
    Grothe B; Schweizer H; Pollak GD; Schuller G; Rosemann C
    J Comp Neurol; 1994 May; 343(4):630-46. PubMed ID: 8034792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experience-dependent refinement of the inhibitory axons projecting to the medial superior olive.
    Werthat F; Alexandrova O; Grothe B; Koch U
    Dev Neurobiol; 2008 Nov; 68(13):1454-62. PubMed ID: 18777566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body.
    Brew HM; Forsythe ID
    Hear Res; 2005 Aug; 206(1-2):116-32. PubMed ID: 16081003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational principles of neural adaptation for binaural signal integration.
    Oess T; Ernst MO; Neumann H
    PLoS Comput Biol; 2020 Jul; 16(7):e1008020. PubMed ID: 32678847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit.
    Weisz CJ; Rubio ME; Givens RS; Kandler K
    J Neurosci; 2016 Jan; 36(3):911-25. PubMed ID: 26791220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity.
    Müller NIC; Sonntag M; Maraslioglu A; Hirtz JJ; Friauf E
    J Physiol; 2019 Nov; 597(22):5469-5493. PubMed ID: 31529505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study.
    Grothe B; Sanes DH
    J Neurosci; 1994 Mar; 14(3 Pt 2):1701-9. PubMed ID: 8126564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive.
    Tollin DJ; Yin TC
    J Neurosci; 2005 Nov; 25(46):10648-57. PubMed ID: 16291937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Species-Specific Adaptation for Ongoing High-Frequency Action Potential Generation in MNTB Neurons.
    Kladisios N; Wicke KD; Pätz-Warncke C; Felmy F
    J Neurosci; 2023 Apr; 43(15):2714-2729. PubMed ID: 36898837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.