BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 24860579)

  • 21. The CBL and CIPK Gene Family in Grapevine (
    Xi Y; Liu J; Dong C; Cheng ZM
    Front Plant Sci; 2017; 8():978. PubMed ID: 28649259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular and expression analysis indicate the role of CBL interacting protein kinases (CIPKs) in abiotic stress signaling and development in chickpea.
    Poddar N; Deepika D; Chitkara P; Singh A; Kumar S
    Sci Rep; 2022 Oct; 12(1):16862. PubMed ID: 36207429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant Stress Responses Mediated by CBL-CIPK Phosphorylation Network.
    Sanyal SK; Rao S; Mishra LK; Sharma M; Pandey GK
    Enzymes; 2016; 40():31-64. PubMed ID: 27776782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks.
    Kolukisaoglu U; Weinl S; Blazevic D; Batistic O; Kudla J
    Plant Physiol; 2004 Jan; 134(1):43-58. PubMed ID: 14730064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The CBL-CIPK Calcium Signaling Network: Unified Paradigm from 20 Years of Discoveries.
    Tang RJ; Wang C; Li K; Luan S
    Trends Plant Sci; 2020 Jun; 25(6):604-617. PubMed ID: 32407699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The CBL-CIPK network mediates different signaling pathways in plants.
    Yu Q; An L; Li W
    Plant Cell Rep; 2014 Feb; 33(2):203-14. PubMed ID: 24097244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the salt overly sensitive pathway in Prunus: Identification and characterization of NHX, CIPK, and CBL genes.
    Acharya BR; Zhao C; Reyes LAR; Ferreira JFS; Sandhu D
    Plant Genome; 2024 Mar; 17(1):e20371. PubMed ID: 37493242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress.
    Chaves-Sanjuan A; Sanchez-Barrena MJ; Gonzalez-Rubio JM; Moreno M; Ragel P; Jimenez M; Pardo JM; Martinez-Ripoll M; Quintero FJ; Albert A
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):E4532-41. PubMed ID: 25288725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Biology of a Major Signaling Network that Regulates Plant Abiotic Stress: The CBL-CIPK Mediated Pathway.
    Sánchez-Barrena MJ; Martínez-Ripoll M; Albert A
    Int J Mol Sci; 2013 Mar; 14(3):5734-49. PubMed ID: 23481636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The CBL-CIPK network is involved in the physiological crosstalk between plant growth and stress adaptation.
    Mao J; Mo Z; Yuan G; Xiang H; Visser RGF; Bai Y; Liu H; Wang Q; van der Linden CG
    Plant Cell Environ; 2023 Oct; 46(10):3012-3022. PubMed ID: 35822392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide identification, expression analysis, and abiotic stress response of the CBL and CIPK gene families in Artocarpus nanchuanensis.
    Xia C; Zhang X; Zuo Y; Zhang X; Zhang H; Wang B; Deng H
    Int J Biol Macromol; 2024 May; 267(Pt 1):131454. PubMed ID: 38588845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-Wide Identification of CBL-CIPK Gene Family in Honeysuckle (
    Huang L; Li Z; Fu Q; Liang C; Liu Z; Liu Q; Pu G; Li J
    Front Genet; 2021; 12():751040. PubMed ID: 34795693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives.
    Weinl S; Kudla J
    New Phytol; 2009 Nov; 184(3):517-528. PubMed ID: 19860013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ca
    Verma P; Sanyal SK; Pandey GK
    Plant Cell Rep; 2021 Nov; 40(11):2111-2122. PubMed ID: 34415375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Chinese Cabbage (
    Wang Q; Zhao K; Gong Y; Yang Y; Yue Y
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potassium nutrient status drives posttranslational regulation of a low-K response network in Arabidopsis.
    Li KL; Tang RJ; Wang C; Luan S
    Nat Commun; 2023 Jan; 14(1):360. PubMed ID: 36690625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arabidopsis CIPK14 positively regulates glucose response.
    Yan J; Niu F; Liu WZ; Zhang H; Wang B; Lan W; Che Y; Yang B; Luan S; Jiang YQ
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1679-83. PubMed ID: 25058458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores.
    Batistic O; Waadt R; Steinhorst L; Held K; Kudla J
    Plant J; 2010 Jan; 61(2):211-22. PubMed ID: 19832944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of CBL-CIPK signaling in plant responses to biotic and abiotic stresses.
    Chen JS; Wang ST; Mei Q; Sun T; Hu JT; Xiao GS; Chen H; Xuan YH
    Plant Mol Biol; 2024 May; 114(3):53. PubMed ID: 38714550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effect of Stress Hormones, Ultraviolet C, and Stilbene Precursors on Expression of Calcineurin B-like Protein (
    Kiselev KV; Aleynova OA; Ogneva ZV; Suprun AR; Ananev AA; Nityagovsky NN; Dneprovskaya AA; Beresh AA; Dubrovina AS
    Plants (Basel); 2023 Apr; 12(7):. PubMed ID: 37050188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.