These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24861014)

  • 61. Viologens as charge carriers in a polymer-based battery anode.
    Sen S; Saraidaridis J; Kim SY; Palmore GT
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7825-30. PubMed ID: 23927403
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells.
    Stein M; Chen CF; Robles DJ; Rhodes C; Mukherjee PP
    J Vis Exp; 2016 Feb; (108):e53490. PubMed ID: 26863503
    [TBL] [Abstract][Full Text] [Related]  

  • 64. MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li-O2 battery cathodes.
    Kim JG; Kim Y; Noh Y; Kim WB
    ChemSusChem; 2015 May; 8(10):1752-60. PubMed ID: 25908219
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries.
    Shao J; Li X; Wan Z; Zhang L; Ding Y; Zhang L; Qu Q; Zheng H
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7671-5. PubMed ID: 23915302
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The ZnSn(OH)6 nanocube-graphene composite as an anode material for Li-ion batteries.
    Chen C; Zheng X; Yang J; Wei M
    Phys Chem Chem Phys; 2014 Oct; 16(37):20073-8. PubMed ID: 25130363
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Energy storage studies on InVO4 as high performance anode material for Li-ion batteries.
    Reddy MV; Wen BL; Loh KP; Chowdari BV
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7777-85. PubMed ID: 23869790
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A review of nanostructured lithium ion battery materials via low temperature synthesis.
    Chen J
    Recent Pat Nanotechnol; 2013 Jan; 7(1):2-12. PubMed ID: 22747718
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.
    Hauffman G; Maguin Q; Bourgeois JP; Vlad A; Gohy JF
    Macromol Rapid Commun; 2014 Jan; 35(2):228-233. PubMed ID: 24127365
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Vapor-phase fabrication of β-iron oxide nanopyramids for lithium-ion battery anodes.
    Carraro G; Barreca D; Cruz-Yusta M; Gasparotto A; Maccato C; Morales J; Sada C; Sánchez L
    Chemphyschem; 2012 Dec; 13(17):3798-801. PubMed ID: 23097215
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery.
    Feng N; He P; Zhou H
    ChemSusChem; 2015 Feb; 8(4):600-2. PubMed ID: 25641874
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.
    Navarra MA; Manzi J; Lombardo L; Panero S; Scrosati B
    ChemSusChem; 2011 Jan; 4(1):125-30. PubMed ID: 21226222
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration.
    Agostini M; Lim DH; Sadd M; Fasciani C; Navarra MA; Panero S; Brutti S; Matic A; Scrosati B
    ChemSusChem; 2017 Sep; 10(17):3490-3496. PubMed ID: 28731629
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries.
    Ryu WH; Gittleson FS; Thomsen JM; Li J; Schwab MJ; Brudvig GW; Taylor AD
    Nat Commun; 2016 Oct; 7():12925. PubMed ID: 27759005
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Lamination of Separators to Electrodes using Electrospinning.
    Springer BC; Frankenberger M; Pettinger KH
    PLoS One; 2020; 15(1):e0227903. PubMed ID: 31990950
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating.
    Ibe T; Frings RB; Lachowicz A; Kyo S; Nishide H
    Chem Commun (Camb); 2010 May; 46(20):3475-7. PubMed ID: 20414502
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Probing the Additional Capacity and Reaction Mechanism of the RuO2 Anode in Lithium Rechargeable Batteries.
    Kim Y; Muhammad S; Kim H; Cho YH; Kim H; Kim JM; Yoon WS
    ChemSusChem; 2015 Jul; 8(14):2378-84. PubMed ID: 26130378
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thermal Decomposition Study on Li
    Kim J; Kang H; Hwang K; Yoon S
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31861185
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In operando spatiotemporal study of Li(2)O(2) grain growth and its distribution inside operating Li-O(2) batteries.
    Shui JL; Okasinski JS; Chen C; Almer JD; Liu DJ
    ChemSusChem; 2014 Feb; 7(2):543-8. PubMed ID: 24399807
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.