These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 24861101)
21. Identification of the transcriptionally active cytochrome P450 repertoire in Coffea arabica. Ivamoto ST; Domingues DS; Vieira LG; Pereira LF Genet Mol Res; 2015 Mar; 14(1):2399-412. PubMed ID: 25867386 [TBL] [Abstract][Full Text] [Related]
22. Transcriptional activity, chromosomal distribution and expression effects of transposable elements in Coffea genomes. Lopes FR; Jjingo D; da Silva CR; Andrade AC; Marraccini P; Teixeira JB; Carazzolle MF; Pereira GA; Pereira LF; Vanzela AL; Wang L; Jordan IK; Carareto CM PLoS One; 2013; 8(11):e78931. PubMed ID: 24244387 [TBL] [Abstract][Full Text] [Related]
23. Biosynthesis of chlorogenic acids in growing and ripening fruits of Coffea arabica and Coffea canephora plants. Koshiro Y; Jackson MC; Katahira R; Wang ML; Nagai C; Ashihara H Z Naturforsch C J Biosci; 2007; 62(9-10):731-42. PubMed ID: 18069248 [TBL] [Abstract][Full Text] [Related]
24. Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Ivamoto ST; Sakuray LM; Ferreira LP; Kitzberger CSG; Scholz MBS; Pot D; Leroy T; Vieira LGE; Domingues DS; Pereira LFP Plant Physiol Biochem; 2017 Feb; 111():340-347. PubMed ID: 28002787 [TBL] [Abstract][Full Text] [Related]
25. Genome-wide identification and expression analysis of the U-box gene family related to biotic and abiotic stresses in Coffea canephora L. Liu S; Liu R; Chen P; Chu B; Gao S; Yan L; Gou Y; Tian T; Wen S; Zhao C; Sun S BMC Genomics; 2024 Oct; 25(1):916. PubMed ID: 39354340 [TBL] [Abstract][Full Text] [Related]
26. Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. Combes MC; Dereeper A; Severac D; Bertrand B; Lashermes P New Phytol; 2013 Oct; 200(1):251-260. PubMed ID: 23790161 [TBL] [Abstract][Full Text] [Related]
27. Flower development in Coffea arabica L.: new insights into MADS-box genes. de Oliveira RR; Cesarino I; Mazzafera P; Dornelas MC Plant Reprod; 2014 Jun; 27(2):79-94. PubMed ID: 24715004 [TBL] [Abstract][Full Text] [Related]
29. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Tak H; Negi S; Ganapathi TR Protoplasma; 2017 Mar; 254(2):803-816. PubMed ID: 27352311 [TBL] [Abstract][Full Text] [Related]
30. Inter-genomic DNA Exchanges and Homeologous Gene Silencing Shaped the Nascent Allopolyploid Coffee Genome (Coffea arabica L.). Lashermes P; Hueber Y; Combes MC; Severac D; Dereeper A G3 (Bethesda); 2016 Sep; 6(9):2937-48. PubMed ID: 27440920 [TBL] [Abstract][Full Text] [Related]
31. Expression Analyses of Soybean VOZ Transcription Factors and the Role of Li B; Zheng JC; Wang TT; Min DH; Wei WL; Chen J; Zhou YB; Chen M; Xu ZS; Ma YZ Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245276 [TBL] [Abstract][Full Text] [Related]
32. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). Yu Q; Guyot R; de Kochko A; Byers A; Navajas-Pérez R; Langston BJ; Dubreuil-Tranchant C; Paterson AH; Poncet V; Nagai C; Ming R Plant J; 2011 Jul; 67(2):305-17. PubMed ID: 21457367 [TBL] [Abstract][Full Text] [Related]
33. Genome-wide analysis, transcription factor network approach and gene expression profile of GH3 genes over early somatic embryogenesis in Coffea spp. Pinto RT; Freitas NC; Máximo WPF; Cardoso TB; Prudente DO; Paiva LV BMC Genomics; 2019 Nov; 20(1):812. PubMed ID: 31694532 [TBL] [Abstract][Full Text] [Related]
34. The Greater Phenotypic Homeostasis of the Allopolyploid Coffea arabica Improved the Transcriptional Homeostasis Over that of Both Diploid Parents. Bertrand B; Bardil A; Baraille H; Dussert S; Doulbeau S; Dubois E; Severac D; Dereeper A; Etienne H Plant Cell Physiol; 2015 Oct; 56(10):2035-51. PubMed ID: 26355011 [TBL] [Abstract][Full Text] [Related]
35. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis. Rai AN; Tamirisa S; Rao KV; Kumar V; Suprasanna P Plant Mol Biol; 2016 Mar; 90(4-5):375-87. PubMed ID: 26711633 [TBL] [Abstract][Full Text] [Related]
36. New cup out of old coffee: contribution of parental gene expression legacy to phenotypic novelty in coffee beans of the allopolyploid Coffea arabica L. Combes MC; Joët T; Stavrinides AK; Lashermes P Ann Bot; 2023 Feb; 131(1):157-170. PubMed ID: 35325016 [TBL] [Abstract][Full Text] [Related]
37. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava. Ren MY; Feng RJ; Shi HR; Lu LF; Yun TY; Peng M; Guan X; Zhang H; Wang JY; Zhang XY; Li CL; Chen YJ; He P; Zhang YD; Xie JH PLoS One; 2017; 12(5):e0177621. PubMed ID: 28542282 [TBL] [Abstract][Full Text] [Related]
39. Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. Merot-L'anthoene V; Tournebize R; Darracq O; Rattina V; Lepelley M; Bellanger L; Tranchant-Dubreuil C; Coulée M; Pégard M; Metairon S; Fournier C; Stoffelen P; Janssens SB; Kiwuka C; Musoli P; Sumirat U; Legnaté H; Kambale JL; Ferreira da Costa Neto J; Revel C; de Kochko A; Descombes P; Crouzillat D; Poncet V Plant Biotechnol J; 2019 Jul; 17(7):1418-1430. PubMed ID: 30582651 [TBL] [Abstract][Full Text] [Related]
40. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Yan H; Jia H; Chen X; Hao L; An H; Guo X Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]