These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24861164)

  • 1. The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal surface plasmon polariton waveguide.
    Zhu QG; Tan W; Wang ZG
    J Phys Condens Matter; 2014 Jun; 26(25):255301. PubMed ID: 24861164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-induced transparency in metal-insulator-metal waveguide side-coupled with multiple cavities.
    Guo J
    Appl Opt; 2014 Mar; 53(8):1604-9. PubMed ID: 24663417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal.
    Chremmos I
    J Opt Soc Am A Opt Image Sci Vis; 2009 Dec; 26(12):2623-33. PubMed ID: 19956333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lasing in plasmon-induced transparency nanocavity.
    Deng ZL; Dong JW
    Opt Express; 2013 Aug; 21(17):20291-302. PubMed ID: 24105575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.
    Zhang Z; Yang J; He X; Han Y; Zhang J; Huang J; Chen D; Xu S
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical cavity-assisted broadband optical transparency of a plasmonic metal film.
    Liu Z; Nie Y; Yuan W; Liu X; Huang S; Chen J; Gao H; Gu G; Liu G
    Nanotechnology; 2015 May; 26(18):185701. PubMed ID: 25873317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-induced transparency in a single multimode stub resonator.
    Cao G; Li H; Deng Y; Zhan S; He Z; Li B
    Opt Express; 2014 Oct; 22(21):25215-23. PubMed ID: 25401555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Q surface-plasmon-polariton whispering-gallery microcavity.
    Min B; Ostby E; Sorger V; Ulin-Avila E; Yang L; Zhang X; Vahala K
    Nature; 2009 Jan; 457(7228):455-8. PubMed ID: 19158793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-short plasmonic splitters and waveguide cross-over based on coupled surface plasmon slot waveguides.
    Fang YJ; Chen Z; Chen L; He KT; Han ZL; Wang ZL
    Opt Express; 2011 Jan; 19(3):2562-72. PubMed ID: 21369076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media.
    Zhong ZJ; Xu Y; Lan S; Dai QF; Wu LJ
    Opt Express; 2010 Jan; 18(1):79-86. PubMed ID: 20173825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intensity and phase sensitivities in metal/dielectric thin film systems exhibiting the coupling of surface plasmon and waveguide modes.
    Grotewohl H; Hake B; Deutsch M
    Appl Opt; 2016 Oct; 55(30):8564-8570. PubMed ID: 27828135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly compact magneto-optical switches for metal-dielectric-metal plasmonic waveguides.
    Haddadpour A; Nezhad VF; Yu Z; Veronis G
    Opt Lett; 2016 Sep; 41(18):4340-3. PubMed ID: 27628392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption switches in metal-dielectric-metal plasmonic waveguides.
    Min C; Veronis G
    Opt Express; 2009 Jun; 17(13):10757-66. PubMed ID: 19550473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency.
    Keleshtery MH; Kaatuzian H; Mir A; Zandi A
    Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing complex reflection coefficients in one-dimensional surface plasmon polariton waveguides and cavities using STEM EELS.
    Schoen DT; Atre AC; GarcĂ­a-Etxarri A; Dionne JA; Brongersma ML
    Nano Lett; 2015 Jan; 15(1):120-6. PubMed ID: 25545292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides.
    Chen J; Li Z; Yue S; Gong Q
    Opt Express; 2009 Dec; 17(26):23603-9. PubMed ID: 20052069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Side-coupled cavity model for surface plasmon-polariton transmission across a groove.
    Liu JS; White JS; Fan S; Brongersma ML
    Opt Express; 2009 Sep; 17(20):17837-48. PubMed ID: 19907571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic spectral splitting in multi-resonator-coupled waveguide systems.
    Zeng C
    Appl Opt; 2014 Jan; 53(1):38-43. PubMed ID: 24513987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-TPPs/Fano resonance systems based on an MDM waveguide structure and its sensing application.
    Lu Y; Zhou Y; Cheng D; Li M; Xu Y; Xu J; Wang J
    Appl Opt; 2023 Nov; 62(33):8741-8748. PubMed ID: 38038019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.