These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 24861280)

  • 1. On the plasmonic photovoltaic.
    Mubeen S; Lee J; Lee WR; Singh N; Stucky GD; Moskovits M
    ACS Nano; 2014 Jun; 8(6):6066-73. PubMed ID: 24861280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A photovoltaic device structure based on internal electron emission.
    McFarland EW; Tang J
    Nature; 2003 Feb; 421(6923):616-8. PubMed ID: 12571591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A surface plasmon enabled liquid-junction photovoltaic cell.
    Lee WR; Mubeen S; Stucky GD; Moskovits M
    Faraday Discuss; 2015; 178():413-20. PubMed ID: 25740725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic nanocrystal solar cells utilizing strongly confined radiation.
    Kholmicheva N; Moroz P; Rijal U; Bastola E; Uprety P; Liyanage G; Razgoniaev A; Ostrowski AD; Zamkov M
    ACS Nano; 2014 Dec; 8(12):12549-59. PubMed ID: 25403025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells.
    Zhang Y; Yam C; Schatz GC
    J Phys Chem Lett; 2016 May; 7(10):1852-8. PubMed ID: 27136049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells.
    Luo Q; Zhang C; Deng X; Zhu H; Li Z; Wang Z; Chen X; Huang S
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34821-34832. PubMed ID: 28929738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elongated Lifetime and Enhanced Flux of Hot Electrons on a Perovskite Plasmonic Nanodiode.
    Park Y; Choi J; Lee C; Cho AN; Cho DW; Park NG; Ihee H; Park JY
    Nano Lett; 2019 Aug; 19(8):5489-5495. PubMed ID: 31348860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers.
    Mubeen S; Hernandez-Sosa G; Moses D; Lee J; Moskovits M
    Nano Lett; 2011 Dec; 11(12):5548-52. PubMed ID: 22040462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Nonthermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure.
    Cushing SK; Chen CJ; Dong CL; Kong XT; Govorov AO; Liu RS; Wu N
    ACS Nano; 2018 Jul; 12(7):7117-7126. PubMed ID: 29945441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions.
    Cushing SK; Bristow AD; Wu N
    Phys Chem Chem Phys; 2015 Nov; 17(44):30013-22. PubMed ID: 26497739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures.
    García de Arquer FP; Mihi A; Kufer D; Konstantatos G
    ACS Nano; 2013 Apr; 7(4):3581-8. PubMed ID: 23495769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.