These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2486134)

  • 1. Frequency dependence of the shear moduli of spectrin studied using a multiple lumped resonator viscoelastometer.
    Sandvold ML; Mikkelsen A; Elgsaeter A
    Acta Chem Scand (Cph); 1989 Sep; 43(8):783-6. PubMed ID: 2486134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic properties of very dilute paramyosin solutions.
    Rosser RW; Schrag JL; Ferry JD; Greaser M
    Macromolecules; 1977; 10(5):978-80. PubMed ID: 916735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexibility of myosin rod determined from dilute solution viscoelastic measurements.
    Hvidt S; Nestler FH; Greaser ML; Ferry JD
    Biochemistry; 1982 Aug; 21(17):4064-73. PubMed ID: 7126531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient electric birefringence of human erythroid spectrin dimers and tetramers at ionic strengths of 4 mM and 53 mM.
    Bjørkøy A; Mikkelsen A; Elgsaeter A
    Eur Biophys J; 1999; 28(4):269-78. PubMed ID: 10394621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human erythrocyte spectrin dimer intrinsic viscosity: temperature dependence and implications for the molecular basis of the erythrocyte membrane free energy.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Biochim Biophys Acta; 1985 Jun; 816(1):102-10. PubMed ID: 4005229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computerized low-shear pendulum viscoelastometer, stress-relaxation, shear creep, and dynamic elastic moduli measurements of soft biogels.
    Mikkelsen A; Stokke BT; Elgsaeter A
    Int J Biomed Comput; 1985 Nov; 17(3-4):215-26. PubMed ID: 4086121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach.
    Kelkar DA; Chattopadhyay A; Chakrabarti A; Bhattacharyya M
    Biopolymers; 2005 Apr; 77(6):325-34. PubMed ID: 15648086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some viscoelastic properties of human erythrocyte spectrin networks end-linked in vitro.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Biochim Biophys Acta; 1985 Jun; 816(1):111-21. PubMed ID: 4005230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt and temperature-dependent conformation changes in spectrin from human erythrocyte membranes.
    Ralston GB; Dunbar JC
    Biochim Biophys Acta; 1979 Jul; 579(1):20-30. PubMed ID: 465530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium.
    Fowler V; Taylor DL
    J Cell Biol; 1980 May; 85(2):361-76. PubMed ID: 6892816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tethered adhesive particle model of two-dimensional elasticity and its application to the erythrocyte membrane.
    Feng S; MacDonald RC
    Biophys J; 1996 Feb; 70(2):857-67. PubMed ID: 8789103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrin promotes the association of F-actin with the cytoplasmic surface of the human erythrocyte membrane.
    Fowler VM; Luna EJ; Hargreaves WR; Taylor DL; Branton D
    J Cell Biol; 1981 Feb; 88(2):388-95. PubMed ID: 6894147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of band 3 lateral and rotational mobility by band 4.2 in intact erythrocytes: release of band 3 oligomers from low-affinity binding sites.
    Golan DE; Corbett JD; Korsgren C; Thatte HS; Hayette S; Yawata Y; Cohen CM
    Biophys J; 1996 Mar; 70(3):1534-42. PubMed ID: 8785311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell fusion generates an inhomogeneous distribution of elasticity and rigidity in plasma membranes.
    Baumann M
    J Membr Biol; 2002 May; 187(1):27-35. PubMed ID: 12029375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior.
    Schmitt C; Hadj Henni A; Cloutier G
    J Biomech; 2011 Feb; 44(4):622-9. PubMed ID: 21122863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electro-optic study of human erythrocyte spectrin dimers. The presence of calcium ions does not alter spectrin flexibility.
    Mikkelsen A; Stokke BT; Elgsaeter A
    Biochim Biophys Acta; 1984 Apr; 786(1-2):95-102. PubMed ID: 6712961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature transitions of protein properties in human red blood cells.
    Artmann GM; Kelemen C; Porst D; Büldt G; Chien S
    Biophys J; 1998 Dec; 75(6):3179-83. PubMed ID: 9826638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis.
    Waugh RE; Agre P
    J Clin Invest; 1988 Jan; 81(1):133-41. PubMed ID: 3335631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The elasticity of spectrin-actin gels at high protein concentration.
    Schanus E; Booth S; Hallaway B; Rosenberg A
    J Biol Chem; 1985 Mar; 260(6):3724-30. PubMed ID: 3972845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric birefringence of recombinant spectrin segments 14, 14-15, 14-16, and 14-17 from Drosophila alpha-spectrin.
    Bjørkøy A; Mikkelsen A; Elgsaeter A
    Biochim Biophys Acta; 1999 Mar; 1430(2):323-40. PubMed ID: 10082960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.