These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 24861356)
1. Construction and DNA condensation of cyclodextrin-coated gold nanoparticles with anthryl grafts. Zhao D; Chen Y; Liu Y Chem Asian J; 2014 Jul; 9(7):1895-903. PubMed ID: 24861356 [TBL] [Abstract][Full Text] [Related]
2. Spatially controllable DNA condensation by a water-soluble supramolecular hybrid of single-walled carbon nanotubes and beta-cyclodextrin-tethered ruthenium complexes. Yu M; Zu SZ; Chen Y; Liu YP; Han BH; Liu Y Chemistry; 2010 Jan; 16(4):1168-74. PubMed ID: 20013764 [TBL] [Abstract][Full Text] [Related]
3. Supramolecular assembly of cyclodextrin-based nanoparticles on solid surfaces for gene delivery. Park IK; von Recum HA; Jiang S; Pun SH Langmuir; 2006 Sep; 22(20):8478-84. PubMed ID: 16981766 [TBL] [Abstract][Full Text] [Related]
4. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular aggregates constructed from gold nanoparticles and l-try-CD polypseudorotaxanes as captors for fullerenes. Liu Y; Wang H; Chen Y; Ke CF; Liu M J Am Chem Soc; 2005 Jan; 127(2):657-66. PubMed ID: 15643890 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of oligo(ethylenediamino)-beta-cyclodextrin modified gold nanoparticle as a DNA concentrator. Wang H; Chen Y; Li XY; Liu Y Mol Pharm; 2007; 4(2):189-98. PubMed ID: 17256872 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular architectures of beta-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. Liu Y; Yu ZL; Zhang YM; Guo DS; Liu YP J Am Chem Soc; 2008 Aug; 130(31):10431-9. PubMed ID: 18627155 [TBL] [Abstract][Full Text] [Related]
8. Construction and DNA condensation of cyclodextrin-based polypseudorotaxanes with anthryl grafts. Liu Y; Yu L; Chen Y; Zhao YL; Yang H J Am Chem Soc; 2007 Sep; 129(35):10656-7. PubMed ID: 17691791 [No Abstract] [Full Text] [Related]
9. Shell-sheddable, pH-sensitive supramolecular nanoparticles based on ortho ester-modified cyclodextrin and adamantyl PEG. Ji R; Cheng J; Yang T; Song CC; Li L; Du FS; Li ZC Biomacromolecules; 2014 Oct; 15(10):3531-9. PubMed ID: 25144934 [TBL] [Abstract][Full Text] [Related]
10. Host-Guest-Mediated DNA Templation of Polycationic Supramolecules for Hierarchical Nanocondensation and the Delivery of Gene Material. Gallego-Yerga L; Blanco-Fernández L; Urbiola K; Carmona T; Marcelo G; Benito JM; Mendicuti F; Tros de Ilarduya C; Ortiz Mellet C; García Fernández JM Chemistry; 2015 Aug; 21(34):12093-104. PubMed ID: 26184887 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular Fluorescent Nanoparticles Constructed via Multiple Non-Covalent Interactions for the Detection of Hydrogen Peroxide in Cancer Cells. Wei X; Dong R; Wang D; Zhao T; Gao Y; Duffy P; Zhu X; Wang W Chemistry; 2015 Aug; 21(32):11427-34. PubMed ID: 26133314 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of supramolecular nanocapsules based on threading of multiple cyclodextrins over polymers on gold nanoparticles. Wu YL; Li J Angew Chem Int Ed Engl; 2009; 48(21):3842-5. PubMed ID: 19378311 [TBL] [Abstract][Full Text] [Related]
13. Coating didodecyldimethylammonium bromide onto Au nanoparticles increases the stability of its complex with DNA. Li P; Zhang L; Ai K; Li D; Liu X; Wang E J Control Release; 2008 Jul; 129(2):128-34. PubMed ID: 18508147 [TBL] [Abstract][Full Text] [Related]
14. Polyanionic Cyclodextrin Induced Supramolecular Nanoparticle. Sun HL; Zhang YM; Chen Y; Liu Y Sci Rep; 2016 Dec; 6(1):27. PubMed ID: 28442707 [TBL] [Abstract][Full Text] [Related]
15. Highly selective recognition of naphthol isomers based on the fluorescence dye-incorporated SH-β-cyclodextrin functionalized gold nanoparticles. Li X; Liu D; Wang Z Biosens Bioelectron; 2011 Jan; 26(5):2329-33. PubMed ID: 21036028 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence determination of DNA with 1-pyrenebutyric acid nanoparticles coated with beta-cyclodextrin as a fluorescence probe. Wang L; Bian G; Wang L; Dong L; Chen H; Xia T Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1201-5. PubMed ID: 15741122 [TBL] [Abstract][Full Text] [Related]
17. Multivalent host-guest interactions between beta-cyclodextrin self-assembled monolayers and poly(isobutene-alt-maleic acid)s modified with hydrophobic guest moieties. Crespo-Biel O; Péter M; Bruinink CM; Ravoo BJ; Reinhoudt DN; Huskens J Chemistry; 2005 Apr; 11(8):2426-32. PubMed ID: 15669046 [TBL] [Abstract][Full Text] [Related]
18. Enhanced DNA Binding and Photocleavage Abilities of β-Cyclodextrin Appended Ru(II) Complex through Supramolecular Strategy. Cheng N; Chen Y; Yu J; Li JJ; Liu Y Bioconjug Chem; 2018 Jun; 29(6):1829-1833. PubMed ID: 29812915 [TBL] [Abstract][Full Text] [Related]
19. Photocontrolled Reversible Conversion of Nanotube and Nanoparticle Mediated by β-Cyclodextrin Dimers. Sun HL; Chen Y; Zhao J; Liu Y Angew Chem Int Ed Engl; 2015 Aug; 54(32):9376-80. PubMed ID: 26089230 [TBL] [Abstract][Full Text] [Related]
20. Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles. Shown I; Ujihara M; Imae T J Colloid Interface Sci; 2010 Dec; 352(2):232-7. PubMed ID: 20851400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]