BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24861907)

  • 21. The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures.
    Qin W; Sun L; Cao J; Peng Y; Collier L; Wu Y; Creasey G; Li J; Qin Y; Jarvis J; Bauman WA; Zaidi M; Cardozo C
    J Biol Chem; 2013 May; 288(19):13511-21. PubMed ID: 23530032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in bone mineral density, markers of bone turnover and extracellular matrix and daily life muscular activity among patients with recent motor-incomplete versus motor-complete spinal cord injury.
    Kostovski E; Hjeltnes N; Eriksen EF; Kolset SO; Iversen PO
    Calcif Tissue Int; 2015 Feb; 96(2):145-54. PubMed ID: 25539858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time.
    Haider IT; Lobos SM; Simonian N; Schnitzer TJ; Edwards WB
    Osteoporos Int; 2018 Dec; 29(12):2703-2715. PubMed ID: 30334093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of Bone Mineral Density at the Distal Femur and the Proximal Tibia by Dual-Energy X-ray Absorptiometry in Individuals With Spinal Cord Injury: Precision of Protocol and Relation to Injury Duration.
    Lobos S; Cooke A; Simonett G; Ho C; Boyd SK; Edwards WB
    J Clin Densitom; 2018; 21(3):338-346. PubMed ID: 28662973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences of bone mass and bone structure in osteopenic rat models caused by spinal cord injury and ovariectomy.
    Jiang SD; Shen C; Jiang LS; Dai LY
    Osteoporos Int; 2007 Jun; 18(6):743-50. PubMed ID: 17216554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of recent spinal cord injury on the OPG/RANKL system and its relationship with bone loss and the response to denosumab therapy.
    Gifre L; Ruiz-Gaspà S; Carrasco JL; Portell E; Vidal J; Muxi A; Monegal A; Guañabens N; Peris P
    Osteoporos Int; 2017 Sep; 28(9):2707-2715. PubMed ID: 28580511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intensive electrical stimulation attenuates femoral bone loss in acute spinal cord injury.
    Groah SL; Lichy AM; Libin AV; Ljungberg I
    PM R; 2010 Dec; 2(12):1080-7. PubMed ID: 21145519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical stimulation of hindlimb skeletal muscle has beneficial effects on sublesional bone in a rat model of spinal cord injury.
    Zhao W; Peng Y; Hu Y; Guo XE; Li J; Cao J; Pan J; Feng JQ; Cardozo C; Jarvis J; Bauman WA; Qin W
    Bone; 2021 Mar; 144():115825. PubMed ID: 33348128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trabecular Bone Score at the Distal Femur and Proximal Tibia in Individuals With Spinal Cord Injury.
    Lobos S; Cooke A; Simonett G; Ho C; Boyd SK; Edwards WB
    J Clin Densitom; 2019; 22(2):249-256. PubMed ID: 29776736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progressive Sublesional Bone Loss Extends into the Second Decade After Spinal Cord Injury.
    Cirnigliaro CM; Myslinski MJ; Asselin P; Hobson JC; Specht A; La Fountaine MF; Kirshblum SC; Forrest GF; Dyson-Hudson T; Spungen AM; Bauman WA
    J Clin Densitom; 2019; 22(2):185-194. PubMed ID: 30503961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of whole body vibration on bone mineral density for a person with a spinal cord injury: a case study.
    Davis R; Sanborn C; Nichols D; Bazett-Jones DM; Dugan EL
    Adapt Phys Activ Q; 2010 Jan; 27(1):60-72. PubMed ID: 20147770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone biomarkers in patients with chronic traumatic spinal cord injury.
    Sabour H; Norouzi Javidan A; Latifi S; Larijani B; Shidfar F; Vafa MR; Heshmat R; Emami Razavi H
    Spine J; 2014 Jul; 14(7):1132-8. PubMed ID: 24139865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone loss at the os calcis compared with bone loss at the knee in individuals with spinal cord injury.
    Garland DE; Adkins RH; Scott M; Singh H; Massih M; Stewart C
    J Spinal Cord Med; 2004; 27(3):207-11. PubMed ID: 15478521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sclerostin antibody preserves the morphology and structure of osteocytes and blocks the severe skeletal deterioration after motor-complete spinal cord injury in rats.
    Qin W; Li X; Peng Y; Harlow LM; Ren Y; Wu Y; Li J; Qin Y; Sun J; Zheng S; Brown T; Feng JQ; Ke HZ; Bauman WA; Cardozo CC
    J Bone Miner Res; 2015 Nov; 30(11):1994-2004. PubMed ID: 25974843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sclerostin: a candidate biomarker of SCI-induced osteoporosis.
    Morse LR; Sudhakar S; Lazzari AA; Tun C; Garshick E; Zafonte R; Battaglino RA
    Osteoporos Int; 2013 Mar; 24(3):961-8. PubMed ID: 22801952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polydatin administration attenuates the severe sublesional bone loss in mice with chronic spinal cord injury.
    Zhan J; Luo D; Zhao B; Chen S; Luan J; Luo J; Hou Y; Hou Y; Xu W; Yan W; Qi J; Li X; Zhang Q; Lin D
    Aging (Albany NY); 2022 Nov; 14(21):8856-8875. PubMed ID: 36378815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the evolution of cortical and trabecular bone compartments in the proximal femur after spinal cord injury by 3D-DXA.
    Gifre L; Humbert L; Muxi A; Del Rio L; Vidal J; Portell E; Monegal A; Guañabens N; Peris P
    Osteoporos Int; 2018 Jan; 29(1):201-209. PubMed ID: 29043391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Soluble Activin Receptor IIB Fails to Prevent Muscle Atrophy in a Mouse Model of Spinal Cord Injury.
    Graham ZA; Collier L; Peng Y; Saéz JC; Bauman WA; Qin W; Cardozo CP
    J Neurotrauma; 2016 Jun; 33(12):1128-35. PubMed ID: 26529111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone mineral loss at the proximal femur in acute spinal cord injury.
    Edwards WB; Schnitzer TJ; Troy KL
    Osteoporos Int; 2013 Sep; 24(9):2461-9. PubMed ID: 23468075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury.
    Coupaud S; McLean AN; Purcell M; Fraser MH; Allan DB
    Bone; 2015 May; 74():69-75. PubMed ID: 25596521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.