These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24861953)

  • 1. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography.
    Beesley DJ; Semple J; Krishnan Jagadamma L; Amassian A; McLachlan MA; Anthopoulos TD; deMello JC
    Nat Commun; 2014 May; 5():3933. PubMed ID: 24861953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Channel Gate-Tunable Diodes Obtained by Asymmetric Contact and Adhesion Lithography on Fluoropolymers.
    Kim M; Kim S; Yoo H
    Small; 2023 Aug; 19(35):e2208144. PubMed ID: 37096940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography.
    Wyatt-Moon G; Georgiadou DG; Semple J; Anthopoulos TD
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41965-41972. PubMed ID: 29172422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level.
    Luo S; Hoff BH; Maier SA; de Mello JC
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102756. PubMed ID: 34719889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital image analysis for measuring nanogap distance produced by adhesion lithography.
    Kano S; Kawazu T; Yamazaki A; Fujii M
    Nanotechnology; 2019 Jul; 30(28):285303. PubMed ID: 30913554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
    Barik A; Chen X; Oh SH
    Nano Lett; 2016 Oct; 16(10):6317-6324. PubMed ID: 27602796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor.
    Hammond JL; Rosamond MC; Sivaraya S; Marken F; Estrela P
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography.
    Qin L; Huang Y; Xia F; Wang L; Ning J; Chen H; Wang X; Zhang W; Peng Y; Liu Q; Zhang Z
    Nano Lett; 2020 Jul; 20(7):4916-4923. PubMed ID: 32559096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma-assisted filling electron beam lithography for high throughput patterning of large area closed polygon nanostructures.
    Tan YS; Liu H; Ruan Q; Wang H; Yang JKW
    Nanoscale; 2020 May; 12(19):10584-10591. PubMed ID: 32373857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanolithography using thermal stresses.
    Purohit G; Deepak ; Katiyar M
    RSC Adv; 2018 Jan; 8(9):4928-4936. PubMed ID: 35539559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraflat Sub-10 Nanometer Gap Electrodes for Two-Dimensional Optoelectronic Devices.
    Namgung S; Koester SJ; Oh SH
    ACS Nano; 2021 Mar; 15(3):5276-5283. PubMed ID: 33625831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes.
    Shim JS; Yun YH; Cho W; Shanov V; Schulz MJ; Ahn CH
    Langmuir; 2010 Jul; 26(14):11642-7. PubMed ID: 20553000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthogonal Lithography for Halide Perovskite Optoelectronic Nanodevices.
    Lin CH; Cheng B; Li TY; Retamal JRD; Wei TC; Fu HC; Fang X; He JH
    ACS Nano; 2019 Feb; 13(2):1168-1176. PubMed ID: 30588789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration.
    Gee A; Jaafar AH; Kemp NT
    Nanotechnology; 2020 Apr; 31(15):155203. PubMed ID: 31860883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanogap electrode fabrication for a nanoscale device by volume-expanding electrochemical synthesis.
    Kim JH; Moon H; Yoo S; Choi YK
    Small; 2011 Aug; 7(15):2210-6. PubMed ID: 21608123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofabrication for all-soft and high-density electronic devices based on liquid metal.
    Kim MG; Brown DK; Brand O
    Nat Commun; 2020 Feb; 11(1):1002. PubMed ID: 32081910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet chemical synthesis of soluble gold nanogaps.
    Jain T; Tang Q; Bjørnholm T; Nørgaard K
    Acc Chem Res; 2014 Jan; 47(1):2-11. PubMed ID: 23944385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust nanogap electrodes by self-terminating electroless gold plating.
    Serdio V VM; Azuma Y; Takeshita S; Muraki T; Teranishi T; Majima Y
    Nanoscale; 2012 Nov; 4(22):7161-7. PubMed ID: 23069983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of crack-junctions.
    Dubois V; Niklaus F; Stemme G
    Microsyst Nanoeng; 2017; 3():17042. PubMed ID: 31057876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-formation of sub-10 nm nanogaps based on silicidation.
    Tang X; Francis LA; Dutu CA; Reckinger N; Raskin JP
    Nanotechnology; 2014 Mar; 25(11):115201. PubMed ID: 24561553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.