These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24862155)

  • 1. Locusts increase carbohydrate consumption to protect against a fungal biopesticide.
    Graham RI; Deacutis JM; Pulpitel T; Ponton F; Simpson SJ; Wilson K
    J Insect Physiol; 2014 Oct; 69():27-34. PubMed ID: 24862155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of water and macronutrients by the Australian plague locust, Chortoicetes terminifera.
    Clissold FJ; Kertesz H; Saul AM; Sheehan JL; Simpson SJ
    J Insect Physiol; 2014 Oct; 69():35-40. PubMed ID: 24975799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis.
    Wang Y; Yang P; Cui F; Kang L
    PLoS Pathog; 2013 Jan; 9(1):e1003102. PubMed ID: 23326229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust.
    Jiang ZY; Ligoxygakis P; Xia YX
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body condition constrains immune function in field populations of female Australian plague locust Chortoicetes terminifera.
    Graham RI; Deacutis JM; Simpson SJ; Wilson K
    Parasite Immunol; 2015 May; 37(5):233-41. PubMed ID: 25677076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibitory effect of the fungal toxin, destruxin A, on behavioural fever in the desert locust.
    Hunt VL; Charnley AK
    J Insect Physiol; 2011 Oct; 57(10):1341-6. PubMed ID: 21729702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose-dependent behavioural fever responses in desert locusts challenged with the entomopathogenic fungus Metarhizium acridum.
    Clancy LM; Jones R; Cooper AL; Griffith GW; Santer RD
    Sci Rep; 2018 Sep; 8(1):14222. PubMed ID: 30242193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions.
    Tounou AK; Kooyman C; Douro-Kpindou OK; Poehling HM
    J Invertebr Pathol; 2008 Mar; 97(3):203-10. PubMed ID: 18005982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Male-Male Mounting Behaviour in Desert Locusts during Infection with an Entomopathogenic Fungus.
    Clancy LM; Cooper AL; Griffith GW; Santer RD
    Sci Rep; 2017 Jul; 7(1):5659. PubMed ID: 28720859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crowded locusts produce hatchlings vulnerable to fungal attack.
    Miller GA; Pell JK; Simpson SJ
    Biol Lett; 2009 Dec; 5(6):845-8. PubMed ID: 19675004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diet Drives the Collective Migrations and Affects the Immunity of Mormon Crickets and Locusts: A Comparison of These Potential Superspreaders of Disease.
    Srygley RB
    Integr Comp Biol; 2016 Aug; 56(2):268-77. PubMed ID: 27252211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar.
    Lee KP; Cory JS; Wilson K; Raubenheimer D; Simpson SJ
    Proc Biol Sci; 2006 Apr; 273(1588):823-9. PubMed ID: 16618675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation of TNF modulates cellular immunity of gregarious and solitary locusts against fungal pathogen
    Wang Y; Tong X; Yuan S; Yang P; Li L; Zhao Y; Kang L
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum.
    Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y
    BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced consumption of protein-rich foods follows immune challenge in a polyphagous caterpillar.
    Mason AP; Smilanich AM; Singer MS
    J Exp Biol; 2014 Jul; 217(Pt 13):2250-60. PubMed ID: 24737766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of macronutrient self-medication and illness-induced anorexia in virally infected insects.
    Povey S; Cotter SC; Simpson SJ; Wilson K
    J Anim Ecol; 2014 Jan; 83(1):245-55. PubMed ID: 24033221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can the protein costs of bacterial resistance be offset by altered feeding behaviour?
    Povey S; Cotter SC; Simpson SJ; Lee KP; Wilson K
    J Anim Ecol; 2009 Mar; 78(2):437-46. PubMed ID: 19021780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How well do specialist feeders regulate nutrient intake? Evidence from a gregarious tree-feeding caterpillar.
    Despland E; Noseworthy M
    J Exp Biol; 2006 Apr; 209(Pt 7):1301-9. PubMed ID: 16547301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum.
    Zhang M; Wei Q; Xia Y; Jin K
    Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased and sex-selective avian predation of desert locusts Schistocerca gregaria treated with Metarhizium acridum.
    MulliƩ WC; Cheke RA; Young S; Ibrahim AB; Murk AJ
    PLoS One; 2021; 16(1):e0244733. PubMed ID: 33395451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.