These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24862162)

  • 1. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface.
    Yao H; Zheng G; Hsu PC; Kong D; Cha JJ; Li W; Seh ZW; McDowell MT; Yan K; Liang Z; Narasimhan VK; Cui Y
    Nat Commun; 2014 May; 5():3943. PubMed ID: 24862162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries.
    Pang Q; Kundu D; Cuisinier M; Nazar LF
    Nat Commun; 2014 Aug; 5():4759. PubMed ID: 25154399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge.
    Zhou G; Paek E; Hwang GS; Manthiram A
    Nat Commun; 2015 Jul; 6():7760. PubMed ID: 26182892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures.
    Huang C; Xiao J; Shao Y; Zheng J; Bennett WD; Lu D; Saraf LV; Engelhard M; Ji L; Zhang J; Li X; Graff GL; Liu J
    Nat Commun; 2014; 5():3015. PubMed ID: 24402522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strategic approach to recharging lithium-sulphur batteries for long cycle life.
    Su YS; Fu Y; Cochell T; Manthiram A
    Nat Commun; 2013; 4():2985. PubMed ID: 24346483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries.
    Helen M; Reddy MA; Diemant T; Golla-Schindler U; Behm RJ; Kaiser U; Fichtner M
    Sci Rep; 2015 Jul; 5():12146. PubMed ID: 26173723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide.
    Wang Z; Dong Y; Li H; Zhao Z; Wu HB; Hao C; Liu S; Qiu J; Lou XW
    Nat Commun; 2014 Sep; 5():5002. PubMed ID: 25255431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode.
    Xiao Y; Wang X; Wang W; Zhao D; Cao M
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2051-8. PubMed ID: 24410006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries.
    Chen H; Zou Q; Liang Z; Liu H; Li Q; Lu YC
    Nat Commun; 2015 Jan; 6():5877. PubMed ID: 25565112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries.
    Zhang F; Cao H; Yue D; Zhang J; Qu M
    Inorg Chem; 2012 Sep; 51(17):9544-51. PubMed ID: 22906577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries.
    Xu JJ; Wang ZL; Xu D; Zhang LL; Zhang XB
    Nat Commun; 2013; 4():2438. PubMed ID: 24052126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.
    Kim KR; Lee KS; Ahn CY; Yu SH; Sung YE
    Sci Rep; 2016 Aug; 6():32433. PubMed ID: 27573528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.
    Wang X; Liu B; Xiang Q; Wang Q; Hou X; Chen D; Shen G
    ChemSusChem; 2014 Jan; 7(1):308-13. PubMed ID: 24339208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications.
    Srinivasan NR; Mitra S; Bandyopadhyaya R
    Phys Chem Chem Phys; 2014 Apr; 16(14):6630-40. PubMed ID: 24576943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interconnected hollow carbon nanospheres for stable lithium metal anodes.
    Zheng G; Lee SW; Liang Z; Lee HW; Yan K; Yao H; Wang H; Li W; Chu S; Cui Y
    Nat Nanotechnol; 2014 Aug; 9(8):618-23. PubMed ID: 25064396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.