BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 24862340)

  • 1. Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades.
    Heitkam T; Holtgräwe D; Dohm JC; Minoche AE; Himmelbauer H; Weisshaar B; Schmidt T
    Plant J; 2014 Aug; 79(3):385-97. PubMed ID: 24862340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BNR - a LINE family from Beta vulgaris - contains a RRM domain in open reading frame 1 and defines a L1 sub-clade present in diverse plant genomes.
    Heitkam T; Schmidt T
    Plant J; 2009 Sep; 59(6):872-82. PubMed ID: 19473321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons.
    Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH
    J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to start a LINE: 5' switching rejuvenates LINE retrotransposons in tobacco and related Nicotiana species.
    Hartig N; Seibt KM; Heitkam T
    Plant J; 2023 Jul; 115(1):52-67. PubMed ID: 36965091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of heterogeneity of Copia-like retrotransposons in the genome of cassava (Manihot esculenta Crantz).
    Gbadegesin MA; Beeching JR
    Niger J Physiol Sci; 2011 Dec; 26(2):125-32. PubMed ID: 22547180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of close-facing retrotransposons: a comparison of molecular data and theory.
    Bousios A; Waxman D; Pearce SR
    J Theor Biol; 2010 May; 264(2):205-10. PubMed ID: 19962995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome.
    Wollrab C; Heitkam T; Holtgräwe D; Weisshaar B; Minoche AE; Dohm JC; Himmelbauer H; Schmidt T
    Plant J; 2012 Nov; 72(4):636-51. PubMed ID: 22804913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-LTR retrotransposons in the African malaria mosquito, Anopheles gambiae: unprecedented diversity and evidence of recent activity.
    Biedler J; Tu Z
    Mol Biol Evol; 2003 Nov; 20(11):1811-25. PubMed ID: 12832632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrotransposon insertion polymorphisms in six rice genes and their evolutionary history.
    Xu Z; Ramakrishna W
    Gene; 2008 Apr; 412(1-2):50-8. PubMed ID: 18291601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species.
    Bento M; Tomás D; Viegas W; Silva M
    Cytogenet Genome Res; 2013; 140(2-4):286-94. PubMed ID: 23899810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species.
    Piednoël M; Carrete-Vega G; Renner SS
    Plant J; 2013 Aug; 75(4):699-709. PubMed ID: 23663083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy.
    Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ
    Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization, genomic organization and chromosomal distribution of Ty1-copia retrotransposons in species of Hypochaeris (Asteraceae).
    Ruas CF; Weiss-Schneeweiss H; Stuessy TF; Samuel MR; Pedrosa-Harand A; Tremetsberger K; Ruas PM; Schlüter PM; Ortiz Herrera MA; König C; Matzenbacher NI
    Gene; 2008 Apr; 412(1-2):39-49. PubMed ID: 18302977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The impact of Ty3-gypsy group retrotransposon Lila on D-genome specificity of wheat Triticum aestivum L].
    Shcherban' AB; Adonina IG; Salina EA
    Mol Biol (Mosk); 2012; 46(4):584-93. PubMed ID: 23113346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of an Archaea-like ribonuclease H domain by plant L1 retrotransposons supports modular evolution.
    Smyshlyaev G; Voigt F; Blinov A; Barabas O; Novikova O
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20140-5. PubMed ID: 24277848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers.
    Kumar A; Pearce SR; McLean K; Harrison G; Heslop-Harrison JS; Waugh R; Flavell AJ
    Genetica; 1997; 100(1-3):205-17. PubMed ID: 9440274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective isolation of retrotransposons and repetitive DNA families from the wheat genome.
    Tomita M; Asao M; Kuraki A
    J Integr Plant Biol; 2010 Jul; 52(7):679-91. PubMed ID: 20590997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of heterogeneity in Ty1-copia GROUP retrotransposons in chickpea (Cicer arietinum L.).
    Rajput MK; Upadhyaya KC
    Mol Biol (Mosk); 2010; 44(4):601-7. PubMed ID: 20873217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.