These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24862482)

  • 1. Degradation of polycyclic aromatic hydrocarbons in a coking wastewater treatment plant residual by an O3/ultraviolet fluidized bed reactor.
    Lin C; Zhang W; Yuan M; Feng C; Ren Y; Wei C
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10329-38. PubMed ID: 24862482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of Coagulation and Ozone Catalytic Oxidation for Pretreating Coking Wastewater.
    Chen L; Xu Y; Sun Y
    Int J Environ Res Public Health; 2019 May; 16(10):. PubMed ID: 31096662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants.
    Zhang W; Wei C; Yan B; Feng C; Zhao G; Lin C; Yuan M; Wu C; Ren Y; Hu Y
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):6418-32. PubMed ID: 23589270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of O
    Dong G; Chen B; Liu B; Cao Y; de Jourdan B; Stoyanov SR; Ling J; Ye X; Lee K; Zhang B
    Water Res; 2022 Nov; 226():119234. PubMed ID: 36270145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.
    Xing R; Zheng Z; Wen D
    J Environ Sci (China); 2015 Mar; 29():45-50. PubMed ID: 25766012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.
    Zhang W; Wei C; An G
    Environ Sci Process Impacts; 2015 May; 17(5):975-84. PubMed ID: 25865172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of polycyclic aromatic hydrocarbons in crumb tyre rubber catalysed by rutile TiO2 under UV irradiation.
    Yu K; Huang L; Lou LL; Chang Y; Dong Y; Wang H; Liu S
    Environ Technol; 2015; 36(5-8):1008-15. PubMed ID: 25323028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic-anoxic-oxic process for highly toxic coke wastewater treatment.
    Zhao W; Sui Q; Huang X
    Sci Total Environ; 2018 Sep; 635():716-724. PubMed ID: 29680762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.
    Pueyo N; Miguel N; Ovelleiro JL; Ormad MP
    Water Sci Technol; 2016; 74(2):482-90. PubMed ID: 27438254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation.
    Xu C; Dong D; Meng X; Su X; Zheng X; Li Y
    J Environ Sci (China); 2013 Mar; 25(3):569-75. PubMed ID: 23923431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O
    Yao W; Ur Rehman SW; Wang H; Yang H; Yu G; Wang Y
    Water Res; 2018 Jul; 138():106-117. PubMed ID: 29574198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of UV-rays in removal of polycyclic aromatic hydrocarbons from treated wastewater.
    Włodarczyk-Makuła M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(3):248-57. PubMed ID: 21279895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of ozone-based processes for the removal of pharmaceuticals detected in a wastewater treatment plant.
    Kim I; Tanaka H
    Water Environ Res; 2010 Apr; 82(4):294-301. PubMed ID: 20432647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse.
    Souza BM; Souza BS; Guimarães TM; Ribeiro TF; Cerqueira AC; Sant'Anna GL; Dezotti M
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22947-22956. PubMed ID: 27578092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of coking wastewater in biofilm-based bioaugmentation process: Biofilm formation and microbial community analysis.
    Yuan K; Li S; Zhong F
    J Hazard Mater; 2020 Dec; 400():123117. PubMed ID: 32574876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence, fates, and carcinogenic risks of substituted polycyclic aromatic hydrocarbons in two coking wastewater treatment systems.
    Saber AN; Zhang H; Islam A; Yang M
    Sci Total Environ; 2021 Oct; 789():147808. PubMed ID: 34058590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant.
    Zhang W; Wei C; Chai X; He J; Cai Y; Ren M; Yan B; Peng P; Fu J
    Chemosphere; 2012 Jun; 88(2):174-82. PubMed ID: 22464861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of chemistry and key reactor parameters for industrial water treatment applications of the UV/O
    Yang S; Song Y; Chang F; Wang K
    Environ Res; 2020 Sep; 188():109660. PubMed ID: 32502684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging concerns of VOCs and SVOCs in coking wastewater treatment processes: Distribution profile, emission characteristics, and health risk assessment.
    Saber AN; Zhang H; Cervantes-Avilés P; Islam A; Gao Y; An W; Yang M
    Environ Pollut; 2020 Oct; 265(Pt B):114960. PubMed ID: 32593902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of ozone-based AOPs on the removal of organic matter from the secondary biochemical effluent of coking wastewater.
    Ji Y; Wang C; He L; Chen X; Wang J; Zhang X; Du Q
    Environ Technol; 2024 Apr; 45(10):1943-1955. PubMed ID: 36511617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.