These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 24862501)
1. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics. Shen S; Ma C; Zhao L; Wang Y; Wang JC; Xu J; Li T; Pang L; Wang J Lab Chip; 2014 Jul; 14(14):2525-38. PubMed ID: 24862501 [TBL] [Abstract][Full Text] [Related]
2. Double spiral microchannel for label-free tumor cell separation and enrichment. Sun J; Li M; Liu C; Zhang Y; Liu D; Liu W; Hu G; Jiang X Lab Chip; 2012 Oct; 12(20):3952-60. PubMed ID: 22868446 [TBL] [Abstract][Full Text] [Related]
3. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Zhou J; Giridhar PV; Kasper S; Papautsky I Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341 [TBL] [Abstract][Full Text] [Related]
5. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Lee MG; Shin JH; Bae CY; Choi S; Park JK Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953 [TBL] [Abstract][Full Text] [Related]
6. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Wu Z; Chen Y; Wang M; Chung AJ Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506 [TBL] [Abstract][Full Text] [Related]
7. Deformability and size-based cancer cell separation using an integrated microfluidic device. Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443 [TBL] [Abstract][Full Text] [Related]
8. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices. Xiang N; Ni Z Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099 [TBL] [Abstract][Full Text] [Related]
9. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159 [TBL] [Abstract][Full Text] [Related]
10. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Xiang N; Wang J; Li Q; Han Y; Huang D; Ni Z Anal Chem; 2019 Aug; 91(15):10328-10334. PubMed ID: 31304740 [TBL] [Abstract][Full Text] [Related]
11. Deformability-based cell classification and enrichment using inertial microfluidics. Hur SC; Henderson-MacLennan NK; McCabe ER; Di Carlo D Lab Chip; 2011 Mar; 11(5):912-20. PubMed ID: 21271000 [TBL] [Abstract][Full Text] [Related]
12. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics. Ni C; Zhu Z; Zhou Z; Xiang N Methods Mol Biol; 2023; 2679():193-206. PubMed ID: 37300617 [TBL] [Abstract][Full Text] [Related]
13. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567 [TBL] [Abstract][Full Text] [Related]
14. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599 [TBL] [Abstract][Full Text] [Related]
15. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation. Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177 [TBL] [Abstract][Full Text] [Related]
16. Large-Volume Microfluidic Cell Sorting for Biomedical Applications. Warkiani ME; Wu L; Tay AK; Han J Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Hyun KA; Jung HI Electrophoresis; 2013 Apr; 34(7):1028-41. PubMed ID: 23436295 [TBL] [Abstract][Full Text] [Related]
18. Separation of cancer cells from a red blood cell suspension using inertial force. Tanaka T; Ishikawa T; Numayama-Tsuruta K; Imai Y; Ueno H; Matsuki N; Yamaguchi T Lab Chip; 2012 Nov; 12(21):4336-43. PubMed ID: 22899210 [TBL] [Abstract][Full Text] [Related]