BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24862572)

  • 1. Mammalian microtubule P-body dynamics are mediated by nesprin-1.
    Rajgor D; Mellad JA; Soong D; Rattner JB; Fritzler MJ; Shanahan CM
    J Cell Biol; 2014 May; 205(4):457-75. PubMed ID: 24862572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of novel nesprin-1 binding partners and cytoplasmic matrin-3 in processing bodies.
    Rajgor D; Hanley JG; Shanahan CM
    Mol Biol Cell; 2016 Dec; 27(24):3894-3902. PubMed ID: 27733621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds.
    Rajgor D; Mellad JA; Autore F; Zhang Q; Shanahan CM
    PLoS One; 2012; 7(7):e40098. PubMed ID: 22768332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Is the microtubule disruption-induced alteration of peroxide concentration a factor inhibiting the assembly of ribonucleoprotein stress granules?].
    Chudinova EM; Nadezhdina ES; Ivanov PA
    Biofizika; 2010; 55(5):857-61. PubMed ID: 21033352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gle1 mediates stress granule-dependent survival during chemotoxic stress.
    Glass L; Wente SR
    Adv Biol Regul; 2019 Jan; 71():156-171. PubMed ID: 30262214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nesprin-1α-Dependent Microtubule Nucleation from the Nuclear Envelope via Akap450 Is Necessary for Nuclear Positioning in Muscle Cells.
    Gimpel P; Lee YL; Sobota RM; Calvi A; Koullourou V; Patel R; Mamchaoui K; Nédélec F; Shackleton S; Schmoranzer J; Burke B; Cadot B; Gomes ER
    Curr Biol; 2017 Oct; 27(19):2999-3009.e9. PubMed ID: 28966089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DISC1 promotes translation maintenance during sodium arsenite-induced oxidative stress.
    Fuentes-Villalobos F; Farkas C; Riquelme-Barrios S; Armijo ME; Soto-Rifo R; Pincheira R; Castro AF
    Biochim Biophys Acta Gene Regul Mech; 2019 Jun; 1862(6):657-669. PubMed ID: 31075539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of microtubules in stress granule assembly: microtubule dynamical instability favors the formation of micrometric stress granules in cells.
    Chernov KG; Barbet A; Hamon L; Ovchinnikov LP; Curmi PA; Pastré D
    J Biol Chem; 2009 Dec; 284(52):36569-36580. PubMed ID: 19843517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nesprins, but not sun proteins, switch isoforms at the nuclear envelope during muscle development.
    Randles KN; Lam le T; Sewry CA; Puckelwartz M; Furling D; Wehnert M; McNally EM; Morris GE
    Dev Dyn; 2010 Mar; 239(3):998-1009. PubMed ID: 20108321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubules govern stress granule mobility and dynamics.
    Nadezhdina ES; Lomakin AJ; Shpilman AA; Chudinova EM; Ivanov PA
    Biochim Biophys Acta; 2010 Mar; 1803(3):361-71. PubMed ID: 20036288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity.
    Daigle JG; Krishnamurthy K; Ramesh N; Casci I; Monaghan J; McAvoy K; Godfrey EW; Daniel DC; Johnson EM; Monahan Z; Shewmaker F; Pasinelli P; Pandey UB
    Acta Neuropathol; 2016 Apr; 131(4):605-20. PubMed ID: 26728149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress.
    Zou T; Yang X; Pan D; Huang J; Sahin M; Zhou J
    Cell Mol Neurobiol; 2011 May; 31(4):541-50. PubMed ID: 21234798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic association-dissociation and harboring of endogenous mRNAs in stress granules.
    Zhang J; Okabe K; Tani T; Funatsu T
    J Cell Sci; 2011 Dec; 124(Pt 23):4087-95. PubMed ID: 22135363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel role for hSMG-1 in stress granule formation.
    Brown JA; Roberts TL; Richards R; Woods R; Birrell G; Lim YC; Ohno S; Yamashita A; Abraham RT; Gueven N; Lavin MF
    Mol Cell Biol; 2011 Nov; 31(22):4417-29. PubMed ID: 21911475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Neuregulin-2 as a novel stress granule component.
    Kim JA; Jayabalan AK; Kothandan VK; Mariappan R; Kee Y; Ohn T
    BMB Rep; 2016 Aug; 49(8):449-54. PubMed ID: 27345716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules.
    Kolobova E; Efimov A; Kaverina I; Rishi AK; Schrader JW; Ham AJ; Larocca MC; Goldenring JR
    Exp Cell Res; 2009 Feb; 315(3):542-55. PubMed ID: 19073175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing mRNA interactions with RNA granules during translation initiation inhibition.
    Zurla C; Lifland AW; Santangelo PJ
    PLoS One; 2011 May; 6(5):e19727. PubMed ID: 21573130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time and quantitative imaging of mammalian stress granules and processing bodies.
    Kedersha N; Tisdale S; Hickman T; Anderson P
    Methods Enzymol; 2008; 448():521-52. PubMed ID: 19111193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of importin alpha1 as a novel constituent of RNA stress granules.
    Fujimura K; Suzuki T; Yasuda Y; Murata M; Katahira J; Yoneda Y
    Biochim Biophys Acta; 2010 Jul; 1803(7):865-71. PubMed ID: 20362631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-specific differences in assembly and composition of stress granules and related foci.
    Aulas A; Fay MM; Lyons SM; Achorn CA; Kedersha N; Anderson P; Ivanov P
    J Cell Sci; 2017 Mar; 130(5):927-937. PubMed ID: 28096475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.