These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 24862838)
1. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate. Rountrey AN; Coulson PG; Meeuwig JJ; Meekan M Glob Chang Biol; 2014 Aug; 20(8):2450-8. PubMed ID: 24862838 [TBL] [Abstract][Full Text] [Related]
2. Long-term patterns in estuarine fish growth across two climatically divergent regions. Doubleday ZA; Izzo C; Haddy JA; Lyle JM; Ye Q; Gillanders BM Oecologia; 2015 Dec; 179(4):1079-90. PubMed ID: 26245148 [TBL] [Abstract][Full Text] [Related]
3. Otolith reliability is context-dependent for estimating warming and CO Tang B; Ding L; Ding C; He D; Su H; Tao J Glob Chang Biol; 2024 Sep; 30(9):e17501. PubMed ID: 39239976 [TBL] [Abstract][Full Text] [Related]
4. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction. Field IC; Meekan MG; Buckworth RC; Bradshaw CJ Adv Mar Biol; 2009; 56():275-363. PubMed ID: 19895977 [TBL] [Abstract][Full Text] [Related]
5. Growth of a deep-water, predatory fish is influenced by the productivity of a boundary current system. Nguyen HM; Rountrey AN; Meeuwig JJ; Coulson PG; Feng M; Newman SJ; Waite AM; Wakefield CB; Meekan MG Sci Rep; 2015 Mar; 5():9044. PubMed ID: 25761975 [TBL] [Abstract][Full Text] [Related]
6. Environmental change drives long-term recruitment and growth variation in an estuarine fish. Morrongiello JR; Walsh CT; Gray CA; Stocks JR; Crook DA Glob Chang Biol; 2014 Jun; 20(6):1844-60. PubMed ID: 24510897 [TBL] [Abstract][Full Text] [Related]
7. Long-term oceanographic and ecological research in the Western English Channel. Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166 [TBL] [Abstract][Full Text] [Related]
8. Fishing constrains phenotypic responses of marine fish to climate variability. Morrongiello JR; Sweetman PC; Thresher RE J Anim Ecol; 2019 Nov; 88(11):1645-1656. PubMed ID: 31034605 [TBL] [Abstract][Full Text] [Related]
9. A century of fish growth in relation to climate change, population dynamics and exploitation. Denechaud C; Smoliński S; Geffen AJ; Godiksen JA; Campana SE Glob Chang Biol; 2020 Oct; 26(10):5661-5678. PubMed ID: 32741054 [TBL] [Abstract][Full Text] [Related]
10. Models of the mechanical sensitivity and growth of otoliths in fish. Kondrachuk AV J Vestib Res; 2003; 13(4-6):189-203. PubMed ID: 15096663 [TBL] [Abstract][Full Text] [Related]
11. Climate-driven synchrony in growth-increment chronologies of fish from the world's largest high-elevation river. Tao J; Kennard MJ; Jia Y; Chen Y Sci Total Environ; 2018 Dec; 645():339-346. PubMed ID: 30029113 [TBL] [Abstract][Full Text] [Related]
12. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Fernandes JA; Cheung WW; Jennings S; Butenschön M; de Mora L; Frölicher TL; Barange M; Grant A Glob Chang Biol; 2013 Aug; 19(8):2596-607. PubMed ID: 23625663 [TBL] [Abstract][Full Text] [Related]
13. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability. Litzow MA; Mueter FJ; Hobday AJ Glob Chang Biol; 2014 Jan; 20(1):38-50. PubMed ID: 23996901 [TBL] [Abstract][Full Text] [Related]
14. Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia. Ong JJ; Rountrey AN; Zinke J; Meeuwig JJ; Grierson PF; O'Donnell AJ; Newman SJ; Lough JM; Trougan M; Meekan MG Glob Chang Biol; 2016 Aug; 22(8):2776-86. PubMed ID: 26970074 [TBL] [Abstract][Full Text] [Related]
15. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Baudron AR; Needle CL; Rijnsdorp AD; Marshall CT Glob Chang Biol; 2014 Apr; 20(4):1023-31. PubMed ID: 24375891 [TBL] [Abstract][Full Text] [Related]
16. From projected species distribution to food-web structure under climate change. Albouy C; Velez L; Coll M; Colloca F; Le Loc'h F; Mouillot D; Gravel D Glob Chang Biol; 2014 Mar; 20(3):730-41. PubMed ID: 24214576 [TBL] [Abstract][Full Text] [Related]
17. Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish. Thresher RE; Koslow JA; Morison AK; Smith DC Proc Natl Acad Sci U S A; 2007 May; 104(18):7461-5. PubMed ID: 17460046 [TBL] [Abstract][Full Text] [Related]
18. Fish otolith asymmetry: morphometry and modeling. Lychakov DV; Rebane YT; Lombarte A; Fuiman LA; Takabayashi A Hear Res; 2006 Sep; 219(1-2):1-11. PubMed ID: 16859847 [TBL] [Abstract][Full Text] [Related]
19. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. Tao J; He D; Kennard MJ; Ding C; Bunn SE; Liu C; Jia Y; Che R; Chen Y Glob Chang Biol; 2018 May; 24(5):2093-2104. PubMed ID: 29331066 [TBL] [Abstract][Full Text] [Related]
20. Fish otolith mass asymmetry: morphometry and influence on acoustic functionality. Lychakov DV; Rebane YT Hear Res; 2005 Mar; 201(1-2):55-69. PubMed ID: 15721561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]