BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24862870)

  • 21. Solution behavior and crystallization of cytochrome bc₁ in the presence of amphipols.
    Charvolin D; Picard M; Huang LS; Berry EA; Popot JL
    J Membr Biol; 2014 Oct; 247(9-10):981-96. PubMed ID: 24942818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins.
    Zoonens M; Giusti F; Zito F; Popot JL
    Biochemistry; 2007 Sep; 46(36):10392-404. PubMed ID: 17705558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization.
    Ollis AA; Kumar A; Postle K
    J Bacteriol; 2012 Jun; 194(12):3069-77. PubMed ID: 22493019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis.
    Feinstein HE; Tifrea D; Sun G; Popot JL; de la Maza LM; Cocco MJ
    J Membr Biol; 2014 Oct; 247(9-10):1053-65. PubMed ID: 24942817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins.
    Garcia-Herrero A; Peacock RS; Howard SP; Vogel HJ
    Mol Microbiol; 2007 Nov; 66(4):872-89. PubMed ID: 17927700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutations in the ExbB cytoplasmic carboxy terminus prevent energy-dependent interaction between the TonB and ExbD periplasmic domains.
    Jana B; Manning M; Postle K
    J Bacteriol; 2011 Oct; 193(20):5649-57. PubMed ID: 21840979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy-coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and leucine 132 in the periplasmic region and aspartate 25 in the transmembrane region are important for ExbD activity.
    Braun V; Gaisser S; Herrmann C; Kampfenkel K; Killmann H; Traub I
    J Bacteriol; 1996 May; 178(10):2836-45. PubMed ID: 8631671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR study of a membrane protein in detergent-free aqueous solution.
    Zoonens M; Catoire LJ; Giusti F; Popot JL
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8893-8. PubMed ID: 15956183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hexameric and pentameric complexes of the ExbBD energizer in the Ton system.
    Maki-Yonekura S; Matsuoka R; Yamashita Y; Shimizu H; Tanaka M; Iwabuki F; Yonekura K
    Elife; 2018 Apr; 7():. PubMed ID: 29661272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35.
    Pocanschi CL; Popot JL; Kleinschmidt JH
    Eur Biophys J; 2013 Mar; 42(2-3):103-18. PubMed ID: 23370791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo.
    Ollis AA; Postle K
    J Bacteriol; 2012 Jun; 194(12):3078-87. PubMed ID: 22493017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Outer membrane active transport: structure of the BtuB:TonB complex.
    Shultis DD; Purdy MD; Banchs CN; Wiener MC
    Science; 2006 Jun; 312(5778):1396-9. PubMed ID: 16741124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriorhodopsin/amphipol complexes: structural and functional properties.
    Gohon Y; Dahmane T; Ruigrok RW; Schuck P; Charvolin D; Rappaport F; Timmins P; Engelman DM; Tribet C; Popot JL; Ebel C
    Biophys J; 2008 May; 94(9):3523-37. PubMed ID: 18192360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers.
    Higgs PI; Myers PS; Postle K
    J Bacteriol; 1998 Nov; 180(22):6031-8. PubMed ID: 9811664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ExbB and ExbD do not function independently in TonB-dependent energy transduction.
    Held KG; Postle K
    J Bacteriol; 2002 Sep; 184(18):5170-3. PubMed ID: 12193634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The same periplasmic ExbD residues mediate in vivo interactions between ExbD homodimers and ExbD-TonB heterodimers.
    Ollis AA; Postle K
    J Bacteriol; 2011 Dec; 193(24):6852-63. PubMed ID: 21984795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substitution of Deoxycholate with the Amphiphilic Polymer Amphipol A8-35 Improves the Stability of Large Protein Complexes during Native Electrophoresis.
    Kameo S; Aso M; Furukawa R; Matsumae R; Yokono M; Fujita T; Tanaka A; Tanaka R; Takabayashi A
    Plant Cell Physiol; 2021 May; 62(2):348-355. PubMed ID: 33399873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic analyses reveal multiple steps in forming TonB-FhuA complexes from Escherichia coli.
    Khursigara CM; De Crescenzo G; Pawelek PD; Coulton JW
    Biochemistry; 2005 Mar; 44(9):3441-53. PubMed ID: 15736954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements.
    Giusti F; Popot JL; Tribet C
    Langmuir; 2012 Jul; 28(28):10372-80. PubMed ID: 22712750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of known components of the Escherichia coli TonB energy transduction system: TonB, ExbB, ExbD and FepA.
    Higgs PI; Larsen RA; Postle K
    Mol Microbiol; 2002 Apr; 44(1):271-81. PubMed ID: 11967085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.