These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 24863058)
41. Generation and analyses of R8L barttin knockin mouse. Nomura N; Tajima M; Sugawara N; Morimoto T; Kondo Y; Ohno M; Uchida K; Mutig K; Bachmann S; Soleimani M; Ohta E; Ohta A; Sohara E; Okado T; Rai T; Jentsch TJ; Sasaki S; Uchida S Am J Physiol Renal Physiol; 2011 Aug; 301(2):F297-307. PubMed ID: 21593186 [TBL] [Abstract][Full Text] [Related]
42. New Insights into the Mechanism of NO Lagostena L; Zifarelli G; Picollo A J Am Soc Nephrol; 2019 Feb; 30(2):293-302. PubMed ID: 30635372 [TBL] [Abstract][Full Text] [Related]
43. Comparison of amphibian and human ClC-5: similarity of functional properties and inhibition by external pH. Mo L; Hellmich HL; Fong P; Wood T; Embesi J; Wills NK J Membr Biol; 1999 Apr; 168(3):253-64. PubMed ID: 10191359 [TBL] [Abstract][Full Text] [Related]
44. Physiology and pathophysiology of ClC-K/barttin channels. Fahlke C; Fischer M Front Physiol; 2010; 1():155. PubMed ID: 21423394 [TBL] [Abstract][Full Text] [Related]
46. Identification and functional characterization of a voltage-gated chloride channel and its novel splice variant in taste bud cells. Huang L; Cao J; Wang H; Vo LA; Brand JG J Biol Chem; 2005 Oct; 280(43):36150-7. PubMed ID: 16129671 [TBL] [Abstract][Full Text] [Related]
47. Mechanisms of Disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance. Krämer BK; Bergler T; Stoelcker B; Waldegger S Nat Clin Pract Nephrol; 2008 Jan; 4(1):38-46. PubMed ID: 18094726 [TBL] [Abstract][Full Text] [Related]
48. Pharmacovigilance database search discloses ClC-K channels as a novel target of the AT Imbrici P; Tricarico D; Mangiatordi GF; Nicolotti O; Lograno MD; Conte D; Liantonio A Br J Pharmacol; 2017 Jul; 174(13):1972-1983. PubMed ID: 28334417 [TBL] [Abstract][Full Text] [Related]
49. Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives. Pusch M; Liantonio A; Bertorello L; Accardi A; De Luca A; Pierno S; Tortorella V; Camerino DC Mol Pharmacol; 2000 Sep; 58(3):498-507. PubMed ID: 10953042 [TBL] [Abstract][Full Text] [Related]
50. Functional Study of Novel Bartter's Syndrome Mutations in ClC-Kb and Rescue by the Accessory Subunit Barttin Toward Personalized Medicine. Sahbani D; Strumbo B; Tedeschi S; Conte E; Camerino GM; Benetti E; Montini G; Aceto G; Procino G; Imbrici P; Liantonio A Front Pharmacol; 2020; 11():327. PubMed ID: 32256370 [TBL] [Abstract][Full Text] [Related]
51. Characterization of an outward rectifying chloride current of Xenopus tropicalis oocytes. Ochoa-de la Paz LD; Espino-Saldaña AE; Arellano-Ostoa R; Reyes JP; Miledi R; Martinez-Torres A Biochim Biophys Acta; 2013 Aug; 1828(8):1743-53. PubMed ID: 23524227 [TBL] [Abstract][Full Text] [Related]
52. Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid. Liantonio A; Accardi A; Carbonara G; Fracchiolla G; Loiodice F; Tortorella P; Traverso S; Guida P; Pierno S; De Luca A; Camerino DC; Pusch M Mol Pharmacol; 2002 Aug; 62(2):265-71. PubMed ID: 12130677 [TBL] [Abstract][Full Text] [Related]
53. Relationship between intracellular pH and chloride in Xenopus oocytes expressing the chloride channel ClC-0. Cooper GJ; Fong P Am J Physiol Cell Physiol; 2003 Feb; 284(2):C331-8. PubMed ID: 12388074 [TBL] [Abstract][Full Text] [Related]
55. A pure chloride channel mutant of CLC-5 causes Dent's disease via insufficient V-ATPase activation. Satoh N; Yamada H; Yamazaki O; Suzuki M; Nakamura M; Suzuki A; Ashida A; Yamamoto D; Kaku Y; Sekine T; Seki G; Horita S Pflugers Arch; 2016 Jul; 468(7):1183-1196. PubMed ID: 27044412 [TBL] [Abstract][Full Text] [Related]
56. Analysis of CLCNKB mutations at dimer-interface, calcium-binding site, and pore reveals a variety of functional alterations in ClC-Kb channel leading to Bartter syndrome. Bignon Y; Sakhi I; Bitam S; Bakouh N; Keck M; Frachon N; Paulais M; Planelles G; Teulon J; Andrini O Hum Mutat; 2020 Apr; 41(4):774-785. PubMed ID: 31803959 [TBL] [Abstract][Full Text] [Related]
57. Parallel down-regulation of chloride channel CLC-K1 and barttin mRNA in the thin ascending limb of the rat nephron by furosemide. Wolf K; Meier-Meitinger M; Bergler T; Castrop H; Vitzthum H; Riegger GA; Kurtz A; Krämer BK Pflugers Arch; 2003 Sep; 446(6):665-71. PubMed ID: 12759757 [TBL] [Abstract][Full Text] [Related]
58. In-vivo administration of CLC-K kidney chloride channels inhibitors increases water diuresis in rats: a new drug target for hypertension? Liantonio A; Gramegna G; Camerino GM; Dinardo MM; Scaramuzzi A; Potenza MA; Montagnani M; Procino G; Lasorsa DR; Mastrofrancesco L; Laghezza A; Fracchiolla G; Loiodice F; Perrone MG; Lopedota A; Conte S; Penza R; Valenti G; Svelto M; Camerino DC J Hypertens; 2012 Jan; 30(1):153-67. PubMed ID: 22080226 [TBL] [Abstract][Full Text] [Related]
59. ClC-3 is a fundamental molecular component of volume-sensitive outwardly rectifying Cl- channels and volume regulation in HeLa cells and Xenopus laevis oocytes. Hermoso M; Satterwhite CM; Andrade YN; Hidalgo J; Wilson SM; Horowitz B; Hume JR J Biol Chem; 2002 Oct; 277(42):40066-74. PubMed ID: 12183454 [TBL] [Abstract][Full Text] [Related]