BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24863101)

  • 21. Predicting the combined toxicity of binary metal mixtures (Cu-Ni and Zn-Ni) to wheat.
    Wang X; Luo X; Wang Q; Liu Y; Naidu R
    Ecotoxicol Environ Saf; 2020 Dec; 205():111334. PubMed ID: 32961486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb).
    Tipping E; Lofts S
    Environ Toxicol Chem; 2015 Apr; 34(4):788-98. PubMed ID: 25318827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration.
    Torrent L; Iglesias M; Marguí E; Hidalgo M; Verdaguer D; Llorens L; Kodre A; Kavčič A; Vogel-Mikuš K
    J Hazard Mater; 2020 Feb; 384():121201. PubMed ID: 31586917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistically significant deviations from additivity: What do they mean in assessing toxicity of mixtures?
    Liu Y; Vijver MG; Qiu H; Baas J; Peijnenburg WJ
    Ecotoxicol Environ Saf; 2015 Dec; 122():37-44. PubMed ID: 26188643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae.
    Gao Y; Feng J; Wang C; Zhu L
    Ecotoxicol Environ Saf; 2017 Apr; 138():146-153. PubMed ID: 28043033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).
    Hong J; Rico CM; Zhao L; Adeleye AS; Keller AA; Peralta-Videa JR; Gardea-Torresdey JL
    Environ Sci Process Impacts; 2015 Jan; 17(1):177-85. PubMed ID: 25474419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an electrostatic model predicting copper toxicity to plants.
    Wang P; De Schamphelaere KA; Kopittke PM; Zhou DM; Peijnenburg WJ; Lock K
    J Exp Bot; 2012 Jan; 63(2):659-68. PubMed ID: 22016428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.
    Lyu J; Park J; Kumar Pandey L; Choi S; Lee H; De Saeger J; Depuydt S; Han T
    Ecotoxicol Environ Saf; 2018 Mar; 149():225-232. PubMed ID: 29182968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of electrostatic-based bioavailability models for interpreting and predicting differential phytotoxicity and uptake of metal mixtures across different soils.
    Qiu H; He E
    Environ Pollut; 2017 Jul; 226():308-316. PubMed ID: 28390704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects.
    Kinraide TB; Yermiyahu U
    J Inorg Biochem; 2007 Sep; 101(9):1201-13. PubMed ID: 17643492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Foliar uptake, biotransformation, and impact of CuO nanoparticles in Lactuca sativa L. var. ramosa Hort.
    Xiong T; Zhang T; Xian Y; Kang Z; Zhang S; Dumat C; Shahid M; Li S
    Environ Geochem Health; 2021 Jan; 43(1):423-439. PubMed ID: 32990874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chronic toxicity, bioavailability and bioaccumulation of Zn, Cu and Pb in Lactuca sativa exposed to waste from an abandoned gold mine.
    Calabró MR; Roqueiro G; Tapia R; Crespo DC; Bargiela MF; Young BJ
    Chemosphere; 2022 Nov; 307(Pt 3):135855. PubMed ID: 35961448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell membrane surface potential (psi0) plays a dominant role in the phytotoxicity of copper and arsenate.
    Wang P; Zhou D; Kinraide TB; Luo X; Li L; Li D; Zhang H
    Plant Physiol; 2008 Dec; 148(4):2134-43. PubMed ID: 18829983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa.
    Benzarti S; Mohri S; Ono Y
    Environ Toxicol; 2008 Oct; 23(5):607-16. PubMed ID: 18528911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of sewage sludge amendment on snail growth and trace metal transfer in the soil-plant-snail food chain.
    Bourioug M; Gimbert F; Alaoui-Sehmer L; Benbrahim M; Badot PM; Alaoui-Sossé B; Aleya L
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17925-36. PubMed ID: 26165994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicity of metals to roots of cowpea in relation to their binding strength.
    Kopittke PM; Blamey FP; McKenna BA; Wang P; Menzies NW
    Environ Toxicol Chem; 2011 Aug; 30(8):1827-33. PubMed ID: 21538487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of different nitrogen forms on the toxicity of Zn in wheat seedling root: a modeling analysis.
    Wang YM; Wang P; Hao XZ; Zhou DM; Li JZ
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):18896-18906. PubMed ID: 28653200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake.
    Wang YM; Kinraide TB; Wang P; Hao XZ; Zhou DM
    Int J Mol Sci; 2014 Dec; 15(12):22661-22677. PubMed ID: 25493475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different effects and mechanisms of polystyrene micro- and nano-plastics on the uptake of heavy metals (Cu, Zn, Pb and Cd) by lettuce (Lactuca sativa L.).
    Xu G; Lin X; Yu Y
    Environ Pollut; 2023 Jan; 316(Pt 2):120656. PubMed ID: 36379290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings.
    Jurkow R; Pokluda R; Sękara A; Kalisz A
    BMC Plant Biol; 2020 Jun; 20(1):290. PubMed ID: 32576147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.