BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24863211)

  • 1. Bioactive, mechanically favorable, and biodegradable copolymer nanocomposites for orthopedic applications.
    Victor SP; Muthu J
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():150-60. PubMed ID: 24863211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue.
    Shahbazi S; Moztarzadeh F; Sadeghi GM; Jafari Y
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1201-9. PubMed ID: 27612818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial.
    Mitha MK; Jayabalan M
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S203-11. PubMed ID: 18592346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.
    Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH
    Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hydroxyapatite on the biodegradation and biomechanical stability of polyester nanocomposites for orthopaedic applications.
    Jayabalan M; Shalumon KT; Mitha MK; Ganesan K; Epple M
    Acta Biomater; 2010 Mar; 6(3):763-75. PubMed ID: 19788944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High strength bioresorbable bone plates: preparation, mechanical properties and in vitro analysis.
    Hasirci V; Lewandrowski KU; Bondre SP; Gresser JD; Trantolo DJ; Wise DL
    Biomed Mater Eng; 2000; 10(1):19-29. PubMed ID: 10950204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of hydroxyapatite in citric acid-based nanocomposites: surface characteristics, degradation, and osteogenicity in vitro.
    Chung EJ; Sugimoto MJ; Ameer GA
    Acta Biomater; 2011 Nov; 7(11):4057-63. PubMed ID: 21784176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro cytotoxicity of injectable and biodegradable poly(propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products.
    Timmer MD; Shin H; Horch RA; Ambrose CG; Mikos AG
    Biomacromolecules; 2003; 4(4):1026-33. PubMed ID: 12857088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites.
    Shi X; Sitharaman B; Pham QP; Spicer PP; Hudson JL; Wilson LJ; Tour JM; Raphael RM; Mikos AG
    J Biomed Mater Res A; 2008 Sep; 86(3):813-23. PubMed ID: 18041725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.
    Becker J; Lu L; Runge MB; Zeng H; Yaszemski MJ; Dadsetan M
    J Biomed Mater Res A; 2015 Aug; 103(8):2549-57. PubMed ID: 25504776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive rosette nanotube-hydroxyapatite nanocomposites improve osteoblast functions.
    Sun L; Zhang L; Hemraz UD; Fenniri H; Webster TJ
    Tissue Eng Part A; 2012 Sep; 18(17-18):1741-50. PubMed ID: 22530958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites.
    Lee KW; Wang S; Yaszemski MJ; Lu L
    Biomaterials; 2008 Jul; 29(19):2839-48. PubMed ID: 18403013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering.
    Díez-Pascual AM; Díez-Vicente AL
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17902-14. PubMed ID: 27383639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.
    Johnson I; Wang SM; Silken C; Liu H
    Acta Biomater; 2016 May; 36():332-49. PubMed ID: 27006335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(Propylene Fumarate)-Hydroxyapatite Nanocomposite Can Be a Suitable Candidate for Cervical Cages.
    Teng Y; Giambini H; Rezaei A; Liu X; Lee Miller A; Waletzki BE; Lu L
    J Biomech Eng; 2018 Oct; 140(10):1010091-8. PubMed ID: 30029248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron nitride nanotubes and nanoplatelets as reinforcing agents of polymeric matrices for bone tissue engineering.
    Farshid B; Lalwani G; Shir Mohammadi M; Simonsen J; Sitharaman B
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):406-419. PubMed ID: 26526153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial.
    Kallukalam BC; Jayabalan M; Sankar V
    Biomed Mater; 2009 Feb; 4(1):015002. PubMed ID: 18981542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility of novel polymer-apatite nanocomposite fibers.
    Dimitrievska S; Petit A; Ajji A; Bureau MN; Yahia L
    J Biomed Mater Res A; 2008 Jan; 84(1):44-53. PubMed ID: 17600325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering.
    Mistry AS; Pham QP; Schouten C; Yeh T; Christenson EM; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2010 Feb; 92(2):451-62. PubMed ID: 19191316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.