These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24863377)

  • 1. A detailed representation of electrostatic energy in prediction of sequence and pH dependence of protein stability.
    Dudek MJ
    Proteins; 2014 Oct; 82(10):2497-511. PubMed ID: 24863377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model.
    Felts AK; Gallicchio E; Wallqvist A; Levy RM
    Proteins; 2002 Aug; 48(2):404-22. PubMed ID: 12112706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-dependent stability of sperm whale myoglobin in water-guanidine hydrochloride solutions.
    Shosheva A; Miteva M; Christova P; Atanasov B
    Eur Biophys J; 2003 Feb; 31(8):617-25. PubMed ID: 12582821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FAMBE-pH: a fast and accurate method to compute the total solvation free energies of proteins.
    Vorobjev YN; Vila JA; Scheraga HA
    J Phys Chem B; 2008 Sep; 112(35):11122-36. PubMed ID: 18683966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.
    Wallace JA; Wang Y; Shi C; Pastoor KJ; Nguyen BL; Xia K; Shen JK
    Proteins; 2011 Dec; 79(12):3364-73. PubMed ID: 21748801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
    Izadi S; Aguilar B; Onufriev AV
    J Chem Theory Comput; 2015 Sep; 11(9):4450-9. PubMed ID: 26575935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.
    Bauer S; Mathias G; Tavan P
    J Chem Phys; 2014 Mar; 140(10):104102. PubMed ID: 24628147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dependence of electrostatic solvation energy on dielectric constants in Poisson-Boltzmann calculations.
    Tjong H; Zhou HX
    J Chem Phys; 2006 Nov; 125(20):206101. PubMed ID: 17144745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
    MacKerell AD; Sommer MS; Karplus M
    J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation.
    Lu BZ; Chen WZ; Wang CX; Xu XJ
    Proteins; 2002 Aug; 48(3):497-504. PubMed ID: 12112674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the pH dependence of protein stability.
    Yang AS; Honig B
    J Mol Biol; 1993 May; 231(2):459-74. PubMed ID: 8510157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the solvent structure on the electrostatic interactions in proteins.
    Rubinstein A; Sherman S
    Biophys J; 2004 Sep; 87(3):1544-57. PubMed ID: 15345535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories.
    Meyer T; Knapp EW
    J Chem Theory Comput; 2015 Jun; 11(6):2827-40. PubMed ID: 26575575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the Gaussian dielectric boundary in Zap to the prediction of protein pKa values.
    Word JM; Nicholls A
    Proteins; 2011 Dec; 79(12):3400-9. PubMed ID: 21661059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide.
    Totrov M; Abagyan R
    Biopolymers; 2001; 60(2):124-33. PubMed ID: 11455546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.