These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24863625)

  • 21. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.
    Frank A; Castaldi MJ
    Waste Manag Res; 2014 Aug; 32(8):745-54. PubMed ID: 25005043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator.
    Møller J; Munk B; Crillesen K; Christensen TH
    Waste Manag; 2011 Jun; 31(6):1184-93. PubMed ID: 21277187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of simulated MSW sizes on the combustion process in a fixed bed: CFD and experimental approaches.
    Sun R; Ismail TM; Ren X; El-Salam MA
    Waste Manag; 2016 Mar; 49():272-286. PubMed ID: 26750870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mathematical modelling of particle mixing effect on the combustion of municipal solid wastes in a packed-bed furnace.
    Yang YB; Swithenbank J
    Waste Manag; 2008; 28(8):1290-300. PubMed ID: 17697769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of the flue gas cleaning system of an RDF incineration power plant.
    Jannelli E; Minutillo M
    Waste Manag; 2007; 27(5):684-90. PubMed ID: 16750619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.
    Lu L; Jin Y; Liu H; Ma X; Yoshikawa K
    Waste Manag; 2014 Jan; 34(1):79-85. PubMed ID: 24120458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of urea based SNCR system in the combustion effluent containing low level of baseline nitric oxide.
    Hossain KA; Mohd-Jaafar MN; Appalanidu KB; Mustafa A; Ani FN
    Environ Technol; 2005 Mar; 26(3):251-9. PubMed ID: 15881021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of the NO
    Lee YJ; Kang JG; Kwon YH; Ko YJ; Lee WS
    Waste Manag Res; 2023 Jan; 41(1):195-204. PubMed ID: 35913072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.
    Yang Y; Pijnenborg MJ; Reuter MA; Verwoerd J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(10):1823-42. PubMed ID: 16194906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pilot-scale evaluation of a novel TiO
    Jung H; Park E; Kim M; Jurng J
    Waste Manag; 2017 Mar; 61():283-287. PubMed ID: 27899246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Emission of Polycyclic Aromatic Hydrocarbons from Municipal Solid Waste Incinerators during the Combustion Cycle.
    Yasuda K; Takahashi M
    J Air Waste Manag Assoc; 1998 May; 48(5):441-447. PubMed ID: 28067145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of the Mahalanobis distance on evaluating the overall performance of moving-grate incineration of municipal solid waste.
    Tao H; He P; Wang Z; Sun W
    Environ Monit Assess; 2018 Apr; 190(5):284. PubMed ID: 29658068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SNCR De-NOx within a moderate temperature range using urea-spiked hydrazine hydrate as reductant.
    Chen H; Chen DZ; Fan S; Hong L; Wang D
    Chemosphere; 2016 Oct; 161():208-218. PubMed ID: 27427778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators.
    Hwang IH; Minoya H; Matsuto T; Matsuo T; Matsumoto A; Sameshima R
    Chemosphere; 2009 Mar; 74(10):1379-84. PubMed ID: 19108871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of gas compositions on NOx reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere.
    Fan W; Zhu T; Sun Y; Lv D
    Chemosphere; 2014 Oct; 113():182-7. PubMed ID: 25065808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling grate combustion of biomass and low rank fuels with CFD application.
    Mätzing H; Gehrmann HJ; Seifert H; Stapf D
    Waste Manag; 2018 Aug; 78():686-697. PubMed ID: 32559960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-situ measurement of temperature and alkali metal concentration in municipal solid waste incinerators using flame emission spectroscopy.
    He X; Lou C; Qiao Y; Lim M
    Waste Manag; 2020 Feb; 102():486-491. PubMed ID: 31756685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Kinetic mechanism and characteristics researches for hydrazine-based NOx removal at moderate to high temperatures].
    Hong L; Chen DZ; Wang D; Huang S
    Huan Jing Ke Xue; 2012 Aug; 33(8):2901-8. PubMed ID: 23213922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incineration of kitchen waste with high nitrogen in vortexing fluidized-bed incinerator and its NO emission characteristics.
    Duan F; Chyang C; Wen J; Tso J
    J Environ Sci (China); 2013 Sep; 25(9):1841-6. PubMed ID: 24520727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding of hazardous waste incineration through computational fluid-dynamics simulation.
    Yang Y; Reuter MA; Voncken JH; Verwoerd J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(4):693-705. PubMed ID: 12046666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.