These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24863760)

  • 1. Surfactant softening of plant leaf cuticle model wax--a Differential Scanning Calorimetry (DSC) and Quartz Crystal Microbalance with Dissipation (QCM-D) study.
    Fagerström A; Kocherbitov V; Westbye P; Bergström K; Arnebrant T; Engblom J
    J Colloid Interface Sci; 2014 Jul; 426():22-30. PubMed ID: 24863760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of water vapor and surfactant absorption by lipid model systems using the quartz crystal microbalance.
    Lu G; Gillece TW; Moore DJ
    Chem Phys Lipids; 2011 May; 164(4):259-65. PubMed ID: 21354121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wax components of larval cocoon silk of the hornet Vespa analis Fabricius.
    Kameda T; Akino T; Kojima K
    Anal Bioanal Chem; 2007 Apr; 387(8):2895-902. PubMed ID: 17333154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical characterization of crystalline networks formed by binary blends of waxes in soybean oil.
    Jana S; Martini S
    Food Res Int; 2016 Nov; 89(Pt 1):245-253. PubMed ID: 28460911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermotropic mesomorphism of a model system for the plant epicuticular wax layer.
    Carreto L; Almeida AR; Fernandes AC; Vaz WL
    Biophys J; 2002 Jan; 82(1 Pt 1):530-40. PubMed ID: 11751340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?
    Buschhaus C; Jetter R
    J Exp Bot; 2011 Jan; 62(3):841-53. PubMed ID: 21193581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM).
    Koch K; Neinhuis C; Ensikat HJ; Barthlott W
    J Exp Bot; 2004 Mar; 55(397):711-8. PubMed ID: 14966216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces.
    Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC
    Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of local and general anaesthetics with liposomal membrane models: a QCM-D and DSC study.
    Paiva JG; Paradiso P; Serro AP; Fernandes A; Saramago B
    Colloids Surf B Biointerfaces; 2012 Jun; 95():65-74. PubMed ID: 22424911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of micellization from heat-capacity measurements.
    Šarac B; Bešter-Rogač M; Lah J
    Chemphyschem; 2014 Jun; 15(9):1827-33. PubMed ID: 24760780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of micromorphology of leaf epicuticular waxes of the rubber tree Ficus elastica by electron microscopy.
    Kim KW
    Micron; 2008 Oct; 39(7):976-84. PubMed ID: 18037304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of bulk effects and bound mass during adsorption of surfactants probed by quartz crystal microbalance with dissipation: insight into data interpretation.
    Bordes R; Höök F
    Anal Chem; 2010 Nov; 82(21):9116-21. PubMed ID: 20942433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphic behavior in protein-surfactant mixtures: the water-bovine serum albumin-sodium taurodeoxycholate system.
    Orioni B; Roversi M; La Mesa C; Asaro F; Pellizer G; D'Errico G
    J Phys Chem B; 2006 Jun; 110(24):12129-40. PubMed ID: 16800527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of dianionic surfactants based on amino acids at different surfaces studied by QCM-D and SPR.
    Bordes R; Tropsch J; Holmberg K
    Langmuir; 2010 Jul; 26(13):10935-42. PubMed ID: 20481462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical processing factors affecting rheological behavior of a wax based formulation.
    Phuapradit W; Shah NH; Lou Y; Kundu S; Infeld MH
    Eur J Pharm Biopharm; 2002 Mar; 53(2):175-9. PubMed ID: 11880000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent-Extracted Wool Wax: Thermotropic Properties and Skin Efficacy.
    Barba Albanell C; Carrer V; Marti M; Iglesias J; Iglesias J; Coderch L
    Skin Pharmacol Physiol; 2018; 31(4):198-205. PubMed ID: 29742517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.
    Junnila S; Hanski S; Oakley RJ; Nummelin S; Ruokolainen J; Faul CF; Ikkala O
    Biomacromolecules; 2009 Oct; 10(10):2787-94. PubMed ID: 19645442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DSC investigation on the influence of gemini surfactant stereochemistry on the organization of lipoplexes and on their interaction with model membranes.
    Aleandri S; Bonicelli MG; Giansanti L; Giuliani C; Ierino M; Mancini G; Martino A; Scipioni A
    Chem Phys Lipids; 2012 Dec; 165(8):838-44. PubMed ID: 23194898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning behavior of silica-coated nanoparticles in aqueous micellar two-phase systems: evidence for an adsorption-driven mechanism from QCM-D and ATR-FTIR measurements.
    Fischer I; Morhardt C; Heissler S; Franzreb M
    Langmuir; 2012 Nov; 28(45):15789-96. PubMed ID: 23078043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local motion and conformational changes in the cuticle of Clivia miniata Regel : A microfluorescence and spin-label study.
    Wunderlich AP; Gaub H; Marsh D; Sackmann E
    Planta; 1990 Jul; 181(4):475-86. PubMed ID: 24196927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.